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1. Introduction 
In the last decade there has been a remarkable growth in general understanding o f  
the design and definition o f  computer  programming languages. This understanding 
has been based upon a recognition that the text of  each program expressed in the 
language should be given a mathematically defined meaning or denotation, in the 
same way as any other  notational system of  logic or mathematics. For  a conven- 
tional sequential programming language, the simplest mathematical  domain  suit- 
able for this purpose is the space o f  partial functions that maps from an abstract 
machine state before execution o f  a c o m m a n d  to the state of  the machine afterward. 
For  a programming language with jumps,  the appropriate mathematical  domain  is 
slightly more complicated, involving continuations. For  a programming language 
in which subprograms are themselves assignable components  of  the abstract ma- 
chine state, the appropriate reflexive domain  o f  cont inuous functions has been 
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discovered by Scott [26]. His techniques have been applied to a variety of  familiar 
and novel programming languages [18, 28]. The concept on which all these 
developments rest is the familiar mathematical concept of a partial function, and 
its familiarity has undoubtedly contributed to the widespread acceptance and 
success of the approach. However, there are two features of certain new experi- 
mental languages involving concurrency that are not so simply treated as mathe- 
matical functions. 

(1) In the parallel execution of commands of a program, the effect of  each 
command can no longer be modeled as a function from an initial state to a final 
state of an abstract machine; it is also necessary to model the continuing interactions 
of a command with its environment. 

(2) In the execution of parallel programs, it is desirable to abstract from the 
relative rates of progress of the commands being executed in parallel. In general, 
this will give rise to nondeterminacy in the behavior and outcome of the program. 

Both these problems arise in acute form in the treatment of a language like that 
of Communicating Sequential Processes (CSP) I12]. 

It is the purpose of this paper to construct a mathematical domain that should 
play the same role in defining the semantics of communicating processes as the 
domain of partial functions does for sequential and deterministic programming 
languages. Every effort has been made to keep the domain simple, and to ensure 
that the necessary operators over objects in the domain have elegant and intuitively 
valid properties. This paper is a much expanded and improved version of an 
Oxford University technical report with the same name [14]. 

The second section of the paper contains a definition of the required domain of 
processes. Following the lead of [9], [19], and [20] we first introduce the concept 
of a transition, which is a ternary relation between 

(l) the initial state of a process, 
(2) a sequence describing its interactions with its environment duringits execution, 

and 
(3) a possible state of the process after those interactions. 

Next we note that the internal states of a process are not observable by its 
environment. We therefore define the concept of an observation of a process, which 
is a finitely describable experiment to which a process can be subjected. We then 
postulate that two processes are identical if they cannot be distinguished by any 
such finite observation. This reasoning leads directly to the construction of our 
proposed mathematical space of processes. 

The next section shows that this space has the usual ordering properties required 
of a semantic domain. The relevant partial ordering is simply set inclusion in the 
reverse of the normal direction, so that one process is an approximation to another 
if it is less deterministic. This partial order on the space of all processes, which is 
shown to be complete, is similar in spirit to the usual Smyth ordering [27]. 

The important consequence of this is that every set of recursive equations in 
process-valued variables has a least solution; and this permits the use of recursion 
both in a programming language and in its formal definition. 

The fourth section defines a wide range of operators over the domain of processes; 
these include sequential composition, conditional composition, two forms of 
parallel composition, and (perhaps most crucial of all) a concealment operator, 
which permits abstraction from the details of internal communications between 
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processes connected in a network. These operators enjoy a number of elegant and 
useful algebraic properties. We hope that this range of defined operators will be a 
sufficient basis in terms of which to define all other operations required in the 
semantics of a parallel programming language, without any further concern for the 
details of  the underlying mathematical model. Thus these operators should play 
the same role as the basic operators defined by Scott for the LAMBDA calculus, 
which shield the practicing user from the complexities of the underlying domain. 

The fifth section gives some examples of the application of the model, by showing 
that it can be used to define some complex but useful programming language 
constructs, and to describe some simple but interesting parallel algorithms. 

The sixth section contains a discussion of related work and future directions for 
research. 

The seventh section discusses the prospects for the development of formal 
methods in increasing reliability of implementation and use of a programming 
language that includes parallelism. 

The final section is an appendix that contains proofs of some of the paper's more 
interesting results. In addition it describes some techniques that can be used to 
prove the correctness of processes defined within the model. 

2. Definition of  a Process 
The ultimate unit in the behavior of a process is an event. Events are regarded as 
instantaneous; if we wish to represent an activity with duration, we must introduce 
two events to represent its start and finish so that other events can occur between 
them. We shall not be interested in the length of the time interval that separates 
events, but only in the relative order in which they occur. We let A stand for the 
set of all events with which we shall be concerned. The behavior of a process up to 
some moment in time can be recorded as the sequence of all events in which it has 
participated; that is known as a trace. We postulate that a process can only perform 
a finite number of events in any finite time, and thus all traces have finite length. 
The set of all possible traces is denoted by A*. 

Let s be a trace and let P and Q be processes. A transition is a proposition 
s 

P-.-~ Q, 

which means that s is a possible trace of the behavior of P up to some moment in 
time, and that the subsequent behavior of P may be the same as that of Q. Thus if 
t is a possible trace of Q, after which it may behave like R, then clearly st (s 
followed by t) is also a possible trace of P, after which it can also behave like R. 

This fact is formalized as a general law: 
l s t  e - ~  Q & Q----~ R =~ P----~ R. (El) 

Sl 
Conversely, if P ---* R, then there must exist some intermediate process Q that 
behaves exactly like P would behave after doing s but before starting on t. This is 
expressed in the law 

P --~ R ~ 3Q.P --~ Q & Q --~ R. (L2) 

The empty trace ( ) is the sequence with no events. It describes the behavior of 
a process that has not yet engaged in any externally recordable event. We adopt 
the convention that after doing nothing a process may remain unchanged. More- 
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over, if betbre performing any visible event a process remains unchanged, we can 
regard all intermediate stages that it may have gone through as equivalent. 

P ~--~ a &  Q ~--~) P c ~ P =  a. (L3) 

If Q # P, then the possibility of  the transition P ~ Q means that P may make 
internal progress, which cannot be observed from outside, after which it can behave 
like Q rather than P. Since, in general, a process is nondeterministie, its internal 
progress will require the making of  arbitrary choices, which are wholly uncontroll- 
able and invisible from outside. Such a choice can only reduce the range of  possible 
future behaviors of P, by excluding behaviors that would have remained possible 
if some alternative choice had been made. Thus the effect of a nondeterministic 
choice made by a process will be to constrain the ability of  the process to perform 
events on the next and subsequent steps. 

The initials of a process P are those events in which it can engage on the very 
first step; they are defined as 

initials(P) = {a E A I 3Q.P ~-~ Q], 
where (a) is the sequence containing the single event a. The choice of  which of  
these events, if any, will actually occur will depend (at least in part) on the 
environment in which the process is placed. Let X be the set of  events that are 
possible for that environment. Then the event that actually occurs must be in the 
intersection (X n initials(P)). If this intersection is empty, then nothing further can 
happen: the process and its environment remain locked forever in deadly embrace 
[7]. Unfortunately, if P is nondeterministic, deadly embrace is still possible even 
when the intersection is nonempty. This occurs when P can progress invisibly to 
become Q, and the intersection (X O initials (Q)) is empty. In such a case, we say 
that X is a possible refusal of P, and that P can refuse X. 

We want to be able to distinguish between processes by observing their behavior 
in finite environments. It will be possible to distinguish between P and Q if and 
only if there is a finite sequence s of events possible for P but not for Q (or vice 
versa), or there is a sequence s that is possible for both and a finite set X of events 
such that P can refuse X after doing s but Q cannot (or vice versa). We adopt this 
view of distinguishability because we consider a realistic environment to be one 
that is at any time capable of performing only a finite number of events. Bearing 
these remarks in mind, we define the set of P's refusals as 

refusals(P) = [XI X finite & 3Q.P ~ Q & X n initials(Q) = OI. 

From this definition it follows that 

(1) O ~ refusals(P); 
(2) if Y ~ refusals(P) and X C_ y, then X E refusals(P); 
(3) i f X  E refusals(P) and Y is a finite subset of  (A - initials(P)), then (X O Y) E 

refusals(P). 

(A - initials(P)) is the set- of events that P cannot perform. The third theorem 
above states that P can refuse these events, together with any other set of events 
that it can refuse. 

A trace of a process is a sequence of events in which it may engage up to some 
moment in time. The set of all such traces is defined: 

traces(P) = {s ~ A* I 3Q.P --~ Q}. 
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From this definition it follows that 
( ) E traces(P), 
st E traces(P) ~ ,  s E traces(P). 

The second theorem states that any prefix (initial subsequence) of a trace of P is 
also a trace of  P. We shall write s <_ u when s is a prefix of u. 

If s is a trace of P, and if, after engaging in the events of s, P can refuse the finite 
set X, we say that the pair (s, X) is a failure of the process P. The set of all such 
failures is defined: 

Tailures(P) --- {(s, X)I 3Q.P-L~ Q & x E refusals(Q)l. 
Since ~ ~ refusals(Q), it follows that s is a trace of P if and only if (s, ~3) is a failure 
of P. From this definition it follows that the set F = failures(P) has the properties: 
(PI) ( s , X ) ~ F ~ s E A *  &XC_.A&Xf in i te ,  
(P2) ( ( ) ,  0 )  E F, 
(P3) (st, ~) ~ F ~ (s, ~)  E F, 
(P4) X _C y & (s, Y) E F ==~ (s, X) ~ F, 
(P5) (s, X)  ~ F &  (s(c), ¢~) q~ F ~  (s, X U  {c}) ~ F. 
Note that (P5) implies that whenever (s, X) is a failure of P and Yis a finite set of 
events such that s(c) is not a trace of P, for all c 6 Y, then (s, X U Y) is also a 
failure of P. This can be interpreted as saying that impossible events can always be 
refused. 

The failures of a process represent possible externally observable aspects of its 
behavior. The fact that (s, X) E failures(P) means that it is possible for P to do s 
and then refuse to do any more, in spite of  the fact that its environment allows 
any of the events of X. Our next postulate states that there exists a process 
corresponding to any possible set of failures. 

If F satisfies the five properties of the previous paragraph, then 
there exists a process P such that failures(P) = F. (L4) 

Finally, we postulate that the failures of a process are the only externally 
observable aspects of its behavior. Thus two processes that fail in exactly the same 
circumstances are indistinguishable by external observation. Since we deliberately 
choose to ignore the details of  the internal construction of  processes, it is reasonable 
to adopt the principle of identity of indiscernibles: 

failures(P) = failures(Q) ~ P = Q. (L5) 
Postulates (L4) and (L5) together state that a process is uniquely defined by its 
failure set. In the future, we shall identify a process with its failure set and define 
the transition relation thus: 

P --~ Q - (Vt, X.(I, X)  ~ a ~ (st, X)  E P). 
This definition is consistent with 
(using conditions P I-P5) 

st p----> Q 
P~O 

traces(P) 
initials(P) 

refusals(P) 
failures(P) 

the laws (LI)-(L3). From the definition we deduce 

t - 3R.(P ----,s R & R ----> Q), 
=_QC_p, 
= [s l(s, ~ )  ~ P}, 
= {al ( (a) ,  0 )  E P}, 
= {x l  ((), x )  ~ PI, 
- - - e .  
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Since transitions can be defined in terms of failure sets and failure sets in terms of 
transitions, it is permissible to use either method in the definition of any particular 
process. It will be found convenient to give an intuitive explanation of the intended 
behavior of a process by gwing laws governing its transitions, followed by a formal 
definition in terms of failure sets. Usually, the laws given will only specify sufficient 
conditions tbr the transitions of the process being defined. The formal definition 
will then specify a failure set whose transitions are precisely those deducible from 
the given laws using (LI)-(L3). In this precise sense, the formal definition using 
transitions specifies the required failure set. 

It might be argued that modeling a process in terms of the negative aspects of  its 
behavior is unnatural. However, we are primarily interested in two types of 
properties of processes, usually referred to as safety and liveness [16]. Safety 
properties of behavior can be treated well in a traces model [29]. Liveness properties, 
m particular absence of deadlock, cannot be treated in a model based on traces 
alone, because traces only give possible pOSltlve information about what might 
happen. By giving possible negative information; that is, failures or refusals, we are 
also able to support reasoning about what must happen. An alternative formulation 
of our model could have been based on the dual concept of acceptances. However, 
this approach seems to lead to rather more conceptual difficulties than the present 
approach. 

We end this section with some examples of processes definable in our model. 

Example 1. The simplest process is STOP, a process that never does anything, 
and therefore always refuses to do anything. It obeys the law 

STOP ~ STOP. 

Furthermore, we can show, using this defining law and (LI)-(L3), that this is the 
only law that it obeys; that is, 

S 

S T O P ~ Q ~ s =  ( )  & Q = S T O P .  

The process that has these properties is defined: 

STOP = {((), X) IX __ A & X finitel. 

Clearly, it refuses to do whatever its environment may offer. 

Example 2. If Q is a process and a is an event, then the process (a ---> Q) is a 
process that first does a and then behaves like Q: 

S Q---. R (a Q) R. 

We also permit Q to make internal progress while waiting for a: 

Q ~ Q'  ~ (a ~ Q) ~ (a ~ Q'). 

The process specified by these laws is 

(a ~ Q) = {((), X) lX  c_ (A - {a}) & X finite} 
U {((a)s, X) I (s, X) ~ QI. 

Clearly, ~t-cannot iniually refuse to perform a if offered; but it may (indeed must) 
refuse everything else. Two examples of processes built using this construction are 

Pa = (a ~ Si?OP), Pb = (b ~ STOP). 
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/ (} ~ " ~ P  ~ " - " ~ T  P t2 ' ~ Q~ o~ O 

FIGURE 1 

Example 3. Let B be a subset of A, and let P(x) be a process for each x in B. 
Then (x :B  ..-. P(x)) is a process that first does any event b in the set B and then 
behaves like P(b). 

P(b) --~ Q ~ (x :B  --.. P(x)) ~ Q, any b E B. 

Again we permit internal progress to be made while waiting for the first event: 

(Vx • B.l~x) ~ e'(x)) ~ (x :B  --, e(x)) ~ (x :B  ---, e'(x)). 

The process specified by these laws is 

(x :B  -.--> P(x)) = {((), X) I X  C (A - B) & X finite} 
t.J {((b)s, X)[ b • B & (s, X) • P(b)}. 

When B is a singleton set {a} this reduces to the definition of (a  ~ P(a)), and when 
B is empty the definition coincides with that of  STOP. 

Note that x is a bound variable of  this construction, so that 

(x :B  ~ P(x)) = ( y : B  ~ P(y)). 

An example of  a process using this construction is 

Example 4. 

Pab = (X: {a, b} ~ STOP). 

With the above definitions of  P,,  Pb, and P~b, let 

Q,,= P,,t.J P,~b, 
Q~ = eb t.J e, , ,  

Q,,b = P,,t3 Pb, 
Ra = Pa O STOP, 
Rb ---- Pb 0 STOP, 
Q - Qab t.J STOP. 

Figure 1 shows the transitions between these processes (other than those deducible 
by transitivity). 
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Process Initials Refusals 

Q {a, b} O, {al, {bl, {a, bl 
R,~ {a} O, [al, {b}, {a, b} 
Ro {b] O, {a], {b], la, bl 
Q~ {a, b} O, la], {hi 
Qo [a, b} O, {b} 
Qb {a, b] O, {a] 
Po~ la, b] O 
Pa {al 0, {b} 
Pb {b} 0,  [a] 
STOP O 0, {a], {b}, [a, bl 

FIGURE 2 

I fA = {a, b}, Figure 2 shows the initials and refusals of  each of  these processes, 
proving that they are distinct. 

Example 5. RUN is a process that will always do anything offered by the 
environment. Thus it satisfies the law: 

S 
RUN ~ RUN, for all s E A*. 

The required definition is 

RUN = {(s, ~)1 s E A*}. 

Clearly, RUN can never refuse anything. A similar process RUNB that will always 
perform events drawn from a subset B __. A can be defined as 

RUNB = {(s, X) I s E B* & X C_ A - B & X finite]. 

Example 6. CHAOS is a process that can do anything at all; but in contrast to 
RUN, it can also at any time refuse to do anything at all. Indeed, it can decide at 
any stage to behave like any other process. 

S 
CHAOS ---* P, for all s E A*, and all P. 

The required definition is 

CHAOS = {(s, X) I s E A* & X C A & X finite}. 

Example 7. Given a nonempty, prefix-closed set T of  traces, there is a process 
det(T) with trace set T, which at any stage refuses only impossible events. Its 
definition is 

det(T) = {(t, X) lt ~ T& (X finite & Vx E X.t<x) q~ T)}. 

Thus the failures of  this process are precisely those deducible from knowledge of  
its trace set and laws (PI)-(P5). Such processes can be thought of  as deterministic, 
because, in general, a process P satisfies the condition 

e J.~ Q ~ p = Q, 

so that no internal decision by P can reduce the range of  its possible future actions, 
if and only if P = det(traces(P)). 

3. Nondeterminism 
This section investigates the properties of  nondeterminism. The transition relation <) . 

~s a natural partial order on the space of  processes corresponding to a measure 
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of nondeterminism, the maximal elements with respect to this ordering being 
precisely the deterministic processes. Indeed, this partial ordering gives the structure 
of a complete semilattice to the space of the processes. This important fact is 
proved in the Appendix. We use the methods of lattice theory [28] to show how 
every recursive definition uniquely determines a process; the mathematics required 
is not difficult, and is fully explained. 

3.1. NONDETERMINISTIC COMPOSITION. If P and Q are processes, the combi- 
nation P rl Q is a process that behaves exactly like P or like Q; but the choice 
between them is wholly nondeterministic: It is made autonomously by the process 
(or by its implementor), and cannot be influenced or even observed by the 
environment. Thus P I"1 Q can do (or refuse to do) everything that P or Q can do 
(or refuse to do): 

$ $ 

P--~ R V Q-.-..~ R ~ ( P I'I Q )......~ R. 

The process determined by this law is simply 

P H Q = P u Q .  
This operation is clearly associative, commutative, and idempotent. It has 

CHAOS as its zero. 

( P n  Q) FIR = e n  ( a n R )  
P n Q = Q H P  
p r l p =  p 

CHAOS H p = CHAOS 

(associative), 
(commutative), 
(idempotent), 
(zero). 

The following relation indicates the intimate connection between nondeterministic 
composition and the transition relation ----> : 

P~--~ a ~=~ (PIT Q) = p. 

This fact is closely connected with the partial-order properties of <--~. 

3.2. DISTRmUTIVITY. One of the main reasons for specifying a nondeterministic 
process such as P In Q is to allow an implementor the freedom to select and 
implement either P or Q, whichever of them is cheaper or gives better performance. 
Suppose F is some function from processes to processes. F( . )  may be regarded as 
an assembly with a vacant slot, into which an arbitrary component may be plugged, 
producing F(P) or F(Q), for example. The behavior of the assembly is then a 
function of the behavior of this component. Suppose that an implementor has to 
implement F(P) fl F(Q). The straightforward way to do this is to implement F(P) 
and F(Q) and then select between them. An alternative way is first to select the 
component, and plug in just that one. This alternative is the same as the standard 
way of implementing F(P rl Q). We would like to ensure that both implementations 
give the same result, that is, that 

F(P H Q) = F(P) n F(Q). 
A function F that satisfies this condition for all processes P and Q is said to be 
distributive. Another reason for preferring distributive functions is that they sim- 
plify proofs of the properties of processes by allowing case analysis of  the alternative 
behaviors. 

As an example, the construction (a ~ .) is distributive, since 
(a --~ (P I1 Q)) = (a ~ P) n (a ~ Q). 
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This means that there is no discernible difference regardless of whether the choice 
between P and Q is made before or after the occurrence of a. 

A function of two or more arguments is distributive if it is distributive in each 
argument separately. Thus nondeterministic composition is itself distributive, 
because 

e q ( Q O R ) = ( e f q a ) o ( e n R )  and ( O n R ) n P - - ( a n p ) n ( R n e ) .  
Furthermore, the construction (x : B ~ P(x)) is distributive in P(x) for all x E B: 

(x: B ~ (P(x) n a(x))) = (x: B ~ P(x)) I'1 (x: B ~ Q(x)). 

Thus all operations introduced so far are distributive. We shall normally make this 
a requirement for all operators introduced hereafter. The only exceptions will be 
operators that may need to call more than one version of an operand into existence. 
For example, if a one-place operator op is defined by means of the two-place 
distributive operator op* by the law 

op(P) = op*(P, P), 
then we see that 

op(P O Q) = op(P) n op(Q) fq op*(e, Q) f] op*(Q, P), 
which may very well be strictly more nondeterministic than op(P) n op(Q). The 
extra nondeterminism is brought about by the fact that the operator may select a 
different implementation of its operand on each occasion when it is used. 

3.3. LXMITS. The relation P ~ Q means that the process P may, as the result 
of internal progress, transform itself automatically into the process Q. A chain of 
processes is an infinite sequence <P, I i __ 0), each member of which may transform 
itself into its successor; thus, it satisfies the law: 

P, ~ P,+l, for all i. 

For each such chain there exist a limit process, denoted U,Pi, which can make a 
transition if and only if every member of the chain can: 

---~ Q) ~ ---~ Q. 

For justification, recall that the transition relation is 
p}.~ Q=_pD_Q, 

the reversion inclusion relation on failure sets. It is easy to prove that the intersec- 
tion of a chain of processes is again a process (see the Appendix). It follows that 
the desired limit process may be defined as 

UP, = NP,, provided W.P, ~ P,+l. 
! ! 

The limit process can do (or refuse) anything ihat every member of the chain can 
do (or refuse); every failure of the limit is a failure of all P,. This operation is again 
distributive: 

provided that <P~ I i ~ 0) and <Q,I i ~_ 0) are chains. 
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The fact that this operation produces a limit with respect to the nondeterminism 
• ~ . 

ordenng ~ ~s expressed: 

Pj ~--~ (UPi) ,  for all j, 

and for all processes Q, 

The relation P ~ Q means simply that the set Q is contained in the set P, as we 
remarked above. Thus everything that Q can do so can P: 

traces(Q) c__ traces(P), 

and everything that Q can refuse so can P: 

refusals(Q) __. refusals(P). 

In other words, P differs from Q only in that it is less deterministic, and that Q 
can result from P by resolution of some of P's inherent nondeterminism. In the 
case of a chain, where P, ~ P,+I for all i, this can mean that there is a potential 
infinity of nondeterministic decisions to be taken; but perhaps none of them will 
actually reach the limit I I,Pi. Thus UiPi can be regarded as an "ideal" element, of  
which the P, are an ever-improving sequence of approximations, getting as close as 
we wish to the limit but perhaps never actually reaching it. However, in imple- 
menting the limit process, we wish to allow an implementor (if so desired) to make 
all the nondeterministic choices in advance of delivering the product. 

3.4. CONa'INOITY. Let F be a distributive function from processes to processes. 
Then F is monotonic because 

e <.-~> Q a ~ ( p f q Q ) = p  
=, F(P fq Q) = F(P) 

F(P) fl F(Q) = F(P) 
F(P) ~ F(Q), 

for all P and Q. Let (P, I i ___ 0) be a chain. Suppose that an implementor is faced 
with the problem of implementing F(UiP,). The straightforward method would be 
to obtain the limit U,P~ and then plug it into the assembly, producing F(IliP,). But 
suppose that the limit process is in some sense unattainable. Then we can apply F 
to each of the approximations P~, obtaining the chain (F(P,) I i _> 0), and then take 
the limit of  that. We would like to be sure that both implementations are the same: 

Then, even if the limit U,F(P,) is unattainable, we can be sure of getting as close 
as we need by the sequence of approximations F(P,). If this condition holds for all 
chains, then F is said to be continuous• Another good reason for preferring 
continuous functions is that they simplify proofs of the properties of processes and 
allow an elegant treatment of recursively defined processes. This will be explained 
in more detail in the next section. 
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As an example, the construction (a ~ .) is continuous, because 

(a --o UP,) = U(a P,), 

whenever <P, I i _> 0) is a chain. 
A function of two or more arguments is continuous if it is continuous in each 

argument separately. Thus nondeterministic composition is continuous, because 
for every process Q and every chain <P, I i _ 0) we have (by elementary properties 
of union and intersection) 

(UP,) n Q = U(P, li Q) and Q n (UP,)= U(QflP,). 
l \ /  / l 

Furthermore, the construction (x:B ---, P(x)) is continuous in P(x) for all x E B: 

provided <P,(x) I i ~ 0) is a chain for each x ~ B. 
Finally, the limit construction is itself continuous: 

provided that for all i, <P,j IJ -> O) is a chain, and for each j, (P,jl i >_. O) is a chain. 
Thus all of the operators introduced so far are continuous, and we shall make 

this a requirement for all operators introduced hereafter. This will ensure that any 
expression composed from named components by applying continuous operators 
will also be continuous in each of its named components. 

3.5. RECURSION. Let F be a continuous function from processes to processes. 
We define the n-fold composition of F by induction on n: 

F°(P) = P, Fn+~(e) = F(F"(P)). 
Since F is continuous, it is also monotonic. Since CHAOS is the most nondeter- 
ministic process of all, it follows that the sequence 

<F"(CHAOS) I n ___ 0) 

constitutes a chain; and its limit is defined by 

up.F(p) = UF"(CHAOS). 
n 

Note that in this notation, p plays the role of a bound variable, so that 

uP" F(p) = #q. F(q). 
Provided that F is continuous, it is clear that uP" F(p) is a fixed point of F, in 

the sense that it satisfies the equation P = F(P). 

F(up.F(p))= F (UF"(CHAOS)) 

= UF(F"(CHAOS)) by continuity 
n 

= UF~÷~(CHAOS) 
n 

= t~p.F(p). 



572 s .D .  BROOKES, C. A. R. HOARE, AND A. W. ROSCOE 

Furthermore, this is the most general solution, in the sense that it can progress 
autonomously to any other solution: 

Q = F(Q) ~ #p.F(p) ~ Q. 

Equivalently, up.F(p) is the least fixed point ofF.  Thus the equation p -- F(p) can 
be regarded as a recursive defimtion of the process #p.F(p); for example, we could 
have defined 

RUN -- t~p.(x:A ~ p), 
RUNn = up.(x:B ~ p), for any B C_ A. 

For another example, the least fixed point uP.P of the identity function is simply 
CHAOS. 

A similar construction can be used to find the solution of mutually recursive 
equations such as 

p = F(p, q), q = G(p, q), 

even (in some cases) when the number of equations is infinite. We will give more 
details in the examples of later sections and in the Appendix. 

The desire to define processes freely by recursion and to be able to manipulate 
recursive definitions in order to prove properties of such processes is one of the 
major motives for requiring operators to be continuous. 

4. Operators on Processes 
In this section we define the most important primitive operators on processes, and 
state their chief properties. The section is sadly devoid of examples; these will be 
found in the next section. Proofs of some of the more interesting results appear in 
the Appendix. 

4.1. PARALLEL COMPOSITION BY INTERSECTION. The combination (PII Q) is 
intended to behave like both P and Q, progressing in parallel. Thus an event can 
occur only when both P and Q are able to participate in it simultaneously. The 
same is therefore true of sequences of events: 

Sp, SQ, P ~ & Q ~ ~ (PII Q) ~ (P' II Q'). (1) 

The process determined by this law is defined as 

(P II Q) -- I(s, xt .J  Y)l(s, s ) ~  e &  (s, Y ) ~  Q}. 
Thus, (P II Q) can refuse a set of events if P can refuse part of  it and Q can refuse 
the rest. 

The operator II is distributive, continuous, associative, and commutative. It has 
STOP as its zero and RUN as its unit; that is, 

ell STOP = STOP, P II RUN = P. 

Furthermore, 

(x:n ~ P(x))II (y:C ---, Q(y)) = (z:(B N C) ~ (P(z)II Q(z))). 
A partial converse to the defining relation (1) above can be proved: 

(PII Q) ..L> R ~ 3P',  a ' .P  _2_, p ,  & a . ~  Q, & R ~ (P' II a ' ) .  

- -  4.2. CONDITIONAL COMPOSITION. The process (P D Q) behaves either like P or 
like Q, but it differs from (prq Q) in that the choice between them can be influenced 
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by the environment on the very first step. If the environment offers an event a that 
is possible fi~r P but not for Q, then P is selected; and conversely for Q. But if the 
environment offers an event that is possible for both processes, the selection 
between them is nondeterminate, and the environment does not get a second 
chance to influence it. Thus 

P ~-~ R V Q <--~ R ~ ( P II Q ) <--~ R. 
Before occurrence of the first event, P and Q may progress independently: 

P <.-~> P'  & Q  <--~ Q' ~(PDQ)<-~>)(P ' D Q ' ) .  
The process determined by these laws is defined 

(PD Q) = 1((), X) l ( ( ) ,  X) ~ P & ( ( ) ,  X) e Q} 
u {(s, x )  ls # ( ) & ((s, x )  e P v (s, X) E Q)}. 

P D Q initially refuses a set if and only if it is refused by both P and Q. 
The operator D is distributive, continuous, associative, commutative, and idem- 

potent. It has unit STOP. Furthermore, it admits distribution thus: 

p n  (Q 0 R) = ( p n  Q) 0 ( p n  R), 
(x:B ~ e(x)) n (y:C---, Q(y)) = (z : (B u C) ---, R(z)), 

where 

R ( z ) = P ( z )  if z E B - C ,  
= Q(z) if z E C -  B, 
= P(z) lq Q(z) otherwise. 

When P = Q, the last theorem is much more simply expressed: 

(x: B W C --* P(x)) -- (x: B ---* P(x)) D (x: C --+ P(x)). 

4.3. PARALLEL COMPOSITION BY INTERLEAVING. The process (P [11 Q) behaves 
like P and Q operating in parallel, but it differs radically from (P j[ Q) in that each 
event requires participation of only one of the processes rather than both. Thus 
each trace of (P [U Q) is an interleaving of a trace of P and a trace of Q, as stated 
in the law 

S l Q t  U 
P ~ P '  & Q ~ ~ (P III Q) ~ (P' Ill Q'), 

where u is an interleaving of s and t. 
The process determined by this law is 

P III a = [(u, X) l 3s, t.(s, X) E P & (t, X) E a 
& u is an interleaving of s and t}. 

P Ul Q can initially refuse a set only if both P and Q refuse it. 
The operator III is distributive, continuous, associative, and commutative. It 

has unit STOP and zero RUN. Furthermore, if P = (x:B ~ P(x)) and Q -- 
(y: C ---> Q(y)), then 

Pill a = (x:B ~ (P(x)III a))  D (y:C---> (Pill a(y))). 
Thus if an event can be performed by both processes, which of them actually 
performs it is nondeterministic. 

4.4. SEQUENTIAL COMPOSITION. Let o," (pronounced tick) denote an event that 
we interpret as successful termination of a process. Then SKIP is defined as a 
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process that does nothing but terminate successfully: 

SKIP = ( v  ---> STOP) 
= 1((), X) l v. ~ x }  

O {((v) ,  X)IXC_ A & Xis  finite}. 

The process (P;Q) behaves like P until P terminates, after which it behaves like Q. 
However, the occurrence of  v- at the end of P does not appear in any trace of 
(P;Q). It occurs automatically, without the knowledge or participation of the 
environment. Thus, if s does not contain v~ we formulate the laws: 

Q<_%> s p ,  Q, (p;Q) 
p ----> & ~ (P' ;Q') ,  

st Qt.  t Q, (p.,Q) 
e S ~  p ,  & Q._.~ 

Note that we allow Q to make internal progress while waiting for P to finish. 
The definition that satisfies these laws is 

P;Q = {(s, X) ls does not contain ~" & (s, X U {~'}) E P} 
U [(st, X ) l s  does not contain v" & (s(~,'), 9 )  ~ P & (t, X) ~ Q}. 

This definition shows that while P is still running, (P;Q) cannot refuse a set X 
unless P can also refuse to terminate successfully. 

In general, it is a useful convention that 11 should be used only in the process 
SKIP. In particular, in the construction (x:B ~ P(x)), the set B should never 
contain v ;  in all of our examples we will assume that this convention is observed. 

Sequential composition is distributive, continuous, and associative. Furthermore, 

SKIP;P -- P, 
STOP;P = STOP, 

(x:B ~ P(x));Q -- (x:B ~ P(x);Q), if v, ~ B, 
(SKIP 0 P);Q = Q I-I (Q I-I (p;Q)). 

The process (SKIP fl p)  can either terminate immediately or behave like P. The 
sequential composition (SKIP n p);Q may choose arbitrarily the first alternative; 
that is, SKIP;Q(= Q), or it may leave the choice to the environment; that is, 
(SKIP;Q) 13 (P;Q). 

The process _*P behaves like an infinite sequential composition 4.5. ITERATION. 
of the process P." 

P;P;P;... 
It can be simply defined by recursion: 

*P = ttq.(~q). 

Iteration is continuous, but not distributive. It fails to be distributive for the reason 
described earlier: *P may well need to call into existence many copies of P, and 
different implementations can be used. In addition to continuity, iteration has the 
following properties: 

(p;*e) _- _*p, 
(_*(x:B ---} P(x)));Q -- *(x:B ~ P(x)), if i i  $ B, 

*STOP = STOP, 
*SKIP -- CHAOS. 

The last result might seem surprising: it may seem more intuitive that _*SKIP 
should equal STOP. Indeed, it is permitted to implement _*SKIP as STOP. But 
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.*SKIP behaves like a process engaging in a nonterrninating internal computation, 
never interacting with its environment. When a process is defined as a set of  
failures, it is important to be able to determine whether a particular failure is 
outside the set. Since *SKIP never interacts with its environment, the environment 
cannot rule out at any stage the possibility that the process might eventually 
perform some observable action. In such a situation it is only reasonable to identify 
the process with the wholly arbitrary process CHAOS. Note that the identity .*SKIP 
= CHAOS is a direct consequence of our definition: CHAOS is the least fixed 
point of the equation p = SKIP;p. 

A terminating form of iteration can be defined 

P until Q = up.(Q [3 (P;p)). 

This repeats P any number of times, possibly ending with a single execution of Q. 
It has the following properties, where we have assumed that w' ~ B: 

.*P = P until (.*P) = P until STOP, 
((x: B ---> P(x)) until (y: C ~ Q(y) );R = (x: B ---, P(x)) until (y: C ~ (Q(y);R), 

SKIP until Q = (CHAOS [3 Q). 

The third result is again surprising: it could be argued that in the implementation 
of (SKIP until Q) the opportunity to behave like Q occurs infinitely often; and it 
is "unfair" to neglect such an opportunity forever. But it seems impossible to define 
a notion of fairness such that a "fair" process can be distinguished from an "unfair" 
one by any finite observation. That is why our theory makes no stipulation of 
fairness. 

Some of these problems can be avoided if we insist that * and until are used only 
on processes whose first event cannot be o-. In such cases, we have the identities 

.*(x:B P(x)) = up.(x:B P(x);p), 
(x :B ~ P(x)) until ( y : C  ~ Q(y)) = ~p.((y:C---~ Q(y)) fl (x :B ~ (P(x);p))). 

The same technique can be used to define a parallel iteration, in which each 
activation of the body of the loop progresses in parallel with all previous activations: 

• *(x:B ---> P(x)) = #p.(x:B --. (P(x) III P)). 
Unfortunately, this technique cannot be applied when a similar problem arises in 
the next section. 

4.6. CONCEALMENT. Let b denote an event (other than o-) that is to be regarded 
as an internal operation of the process P. For example, it may be an interaction 
between some component processes from which P has been constructed. We wish 
such events to occur automatically whenever they can, without the participation 
or even the knowledge of the environment of P. We therefore define Pkb as the 
process that behaves like P except that every occurrence of b is removed from its 
traces; it therefore satisfies the law 

s skb 
P --~ Q =0 (P\b) ---> (Q\b), 

where skb is formed from s by removing all occurrences of b. 
For reasons explained in the previous section, if P can engage in an infinite 

sequence of occurrences of b, so that P\b  can perform an unbounded sequence of 
hidden actions, without ever interacting with its environment, then Pkb equals 
CHAOS: 

(Vn.P, ~ P,+,) =0 (PoXb) ~ CHAOS. 
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The required definition is 

PXb = {(s\b, X) l(s, X O {b}) E P} 
U {((s\b)t, X) I Vn.(sb n, 0 )  E P & (t, X )  E CHAOS], 

where sb ~ is s followed by n occurrences of b. 
This operation is distributive and continuous, and 

(P \b ) \ c  -- (P\c) \b ,  (P \b ) \b  -- P\b.  

Therefore, if B is any finite set of events, [b~ . . . . .  b,}, we can define 

e k B  = (. . . ( (P\b , ) \b2) \ .  . . kbn). 

Other theorems are 
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STOP\b = STOP, 
RUN-~b = CHAOS, 

CHAOSXb = CHAOS, 
(b ~ P ) \b  = P\b,  

( x : B  ---, P(x) ) \b  = ( x : B  ~ P(x)\b) ,  if b $ B, 
((b ~ P) D ( x : B  --. P(x))) \b = (P\b)  [q ((P\b) 13 ( x : B  ~ P(x)\b)) ,  if b $ B. 

The Appendix contains proofs of some of the interesting properties of the hiding 
operator. 

4.7. INVERSE IMAGE. Let f be any (total) function from events to events. 
Then we define f-~(P) to be a process that can do a whenever P could have done 
f(a): 

p ~ Q ~ f _ , ( p )  s , 
f -  (Q), 

where the sequencef(s) is obtained by applyingfto each element of s. 
The required definition is 

f-~(P) --- [(s, X )  l(f(s), f (X) )  E e & X is finite}, 

where we have used f(X) for the set [f(x)lx ~ X}. We shall also usef-~(B) for the 
inverse image of B under f, that is, {alf(a) E B}. 

f - '  is distributive and continuous; furthermore 

f - ' ( g - ' ( P ) )  = ( g o f ) - ' ( P ) ,  
f-~(STOP) = STOP, 
f - ' (RUN)  -- RUN, 

f-~(x: B ~ P(x)) = ( y ' f - l ( O )  ....~ j a - l (p ( j~y ) ) ) ) .  

f - '  distributes through D, II, Ill, and ; (providedf- '(o ") -- {~,'1) and 

f - ' (PkB)  = f - ' (P) \ f - t (B) ,  

providedf-~(B) is finite and each event in B lies in the range o f f  
The Appendix contains proofs of some of these properties. 

4.8. DmECT IMAGE. Let f be any total function from events to events with 
the property that the set f-~(a) is finite for all a E A. (This is called the finite pre- 
image property.) We define t iP )  to be a process that can perform fla) whenever P 
could have done a: 

~_~ f(Q) P ~ Q ~ f(P) 
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The required definition is 

f(P) = {(f(s), X) l(s, f-I(X)) ~ P}. 

This operation is distributive and continuous; furthermore 

fig(P)) = ( f  og)(P), 
fiSTOP) = STOP, 
f (RUN) = R U N ,  A), 

J(a ~ P) = (f(a) ~ f(P)). 

fdistributes through 13, II (provided f i s  injective), III, and ; (provided f '~(v ' )  = 
{v," }). Some connections between the inverse and direct image operations are 

f-i(fle)) = p, when f i s  injective; 
f(f-l(e)) = p, when f i s  surjective. 

Moreover, when f i s  a bijection, the direct image of P under f -I agrees with the 
inverse image of  P under f, as we would expect. 

5. Applications 
In this section we give a number of  examples of the use of  the operators defined 
above in the definition of simple processes. In each case, we use laws about 
transitions to specify the required behavior of a process before constructing it. 

5.1. A COUNT REOSTER. A COUNT is a process that behaves like an un- 
bounded nonnegative integer register, with initial value zero. It engages in three 
kinds of event: 

up increments the register, and can occur at any time. 
down decrements the register, and cannot occur when its value is zero. 
iszero can occur only when the value is zero. 

Thus the behavior of COUNT is specified by the law: 

COUNT ~ Q ~ (EQ(s) & initials(Q) = [up, iszero]) 
V (LESS(s) & initials(Q) = {up, down]), 

where EQ(s) means that the number of occurrences of  "up" and of  "down" in s 
are equal, and LESS(s) means that there are fewer occurrences of  "down" than 
"up" in s. 

A simple definition of a process COUNTo, which satisfies these laws, can be 
given by an infinite mutual recursion (indexed by the natural numbers). The 
process COUNTn defines the behavior of a count register holding the value n. 

COUNTo = (iszero ~ COUNTo) lq (up ~ COUNT0,  
COUNTn+I = (down ~ COUNTn) 0 (up ~ COUNTn+2). 

Another process that satisfies these laws is ZERO, where 

ZERO = (iszero .-o ZERO) [3 (up ~ (POS;ZERO)) 

and 

POS = (down ~ SKIP) U (up ~ (POS;POS)). 

Note that POS terminates successfully when it first performs one more "down" 
than "up". In order to compensate for an initial "up", it needs to perform two 
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more "down"s than "up"s. This is achieved by first performing one more, and then 
one more again. A third definition of  the same process is Co, where 

Co = (iszero --, Co) [3 (up --, Cz), 
Cn+l -- POS;Cn. 

5.2. CHANNEL NAMING. In this and later sections we shall assume that the only 
events are communications between processes, which are linked by named chan- 
nels. Thus each event consists of two parts "m.t", where m is the name of a channel 
along which the communication takes place, and t is the content of the message 
that passes. We define 

chan(m.t) = m, 
contm(m.t) = t. 

If P is a process, then (m.P) is the process that engages in m.t whenever P would 
have engaged in t; this is the direct image of  P under the renaming function 

re(a) = m.a, for all a E A, 
(m.e) -- re(P). 

For example, 

m.COUNT3 = (m.down ---> m.COUNT2) Iq (m.up --~ m.COUNT4). 

We can now construct two separate COUNTs, communicating along differently 
named channels and operating in parallel: 

(n.COUNTo) Ill (m.COUNT3). 

Suppose now that a process MASTER requires to use a count register, commu- 
nicating with it along some channel named m. To use the register, it engages in 
the events m.up, m.down, and m.iszero. By using the operator [[, we can ensure 
that the process m.COUNT engages in these events at the same time as the 
MASTER. But first we need to ensure that m.COUNT will ignore all communi- 
cations of  the MASTER, except those that are directed along the channel m, This 
is done by using the interleaving operator. Let M = Im.up, re.down, m.iszero}. 
Then define 

P ignoring B = (e  Ill RUN~), 

for any set B of  events. We wish to run the "slave" COUNT process in parallel 
with its MASTER, but ignoring events outside of  the set M, and we also want to 
hide the internal communications between the master and slave process. To this 
end, we define the master-slave construction [m:P II Q] and use it as follows: 

[m:COUNT3 II MASTER] = (((m.COUNT3) ignoring (.4 - M))II MASTER)kM. 

If the MASTER requires to use two differently named COUNTs, we can similarly 
define 

[n:COUNTo II [re:COUNT3 II MASTER]]. 

For example, the MASTER may contain the following process code, which termi- 
nates successfully when it has added the current value of m to the current value of 
n, leaving the former unchanged: 

ADD = #p.((m.iszero ---> SKIP) [3 (m.down ---> (n.up --, (p;(m.up --> SKIP))))). 
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ADD has the property that 

[n:COUNT, II [m:COUNTj II (ADD;RESTOFMASTER)]] 
--- [n:COUNT,+~ II [m:COUNTj II RESTOFMASTER]]. 

This example shows how simultaneous participation in events by parallel processes 
can achieve the effect of  communication between them. 

It is possible (with care) to use the master-slave relation recursively, as shown 
by yet another example of the COUNT register: 

COUNT = ttp.[m:p II LOOP], 

where 

LOOP = gq.[(iszero --~ q) 
13 (up --* ttr.(up --. m.up ---* r 

13 down -~ (m.down ~ r) 13 (m.iszero --~ q)))]. 

The process LOOP is initially able to reveal that its value is zero or to accept an 
increment "up". Subsequent "up"s are relayed to the slave, as are "down"s when 
the slave is prepared to accept them. If the slave has value zero it will not cooperate 
in "m.down" but will instead communicate "m.iszero", a signal for the LOOP to 
return to its initial state. 

It can be shown that all of our recursive definitions of COUNT registers define 
the same process: 

COUNT = COUNTo = Co -- ZERO. 

The Appendix contains some of the details of  the proof, and illustrates the 
techniques available in proving such results. 

5.3. BUFFERS AND CHAINS. We define a BUFFER (of type T) as a process that 
inputs any sequence of values from the set T along a channel named "in" and 
outputs the same sequence of values along a channel named "out". Let m be a 
channel name, and let 

m.T = {m.tlt ~ T}, 
(s Im) = contm(s\(A - m. T)), 
XIm = {tlm.t E X}. 

Less formally, (s rm) is the sequence of values whose communication along channel 
"m" is recorded in the trace s. Now a BUFFER is a process that satisfies the law 

$ 

BUFFER ~ Q =0 
s E (in. T tO out. T)* & 
(s rout _< s tin) & 
(s I'out = s Fin =0 initials(Q) = in.T) & 
(stout ¢ srin ~ initials(Q) n out.T ¢ •). 

The third line states that an empty buffer must input any value of  type T, and the 
fourth line states that a nonempty buffer must always be prepared to output some 
value of type T. The condition that the output sequence be a prefix of the input 
sequence (line 2) guarantees that the values are transmitted in the correct order. It 
is left undetermined whether a nonempty buffer may refuse to input. 

A simple example that meets this specification is the single-portion buffer BI: 

B I = _*(x: (in.T) ---> (out.(cont,n(x)) --* SKIP)). 
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In future we shall use abbreviations: 

(?x: T --~ P(x)) for (y:  (in. T) --* P(conti.(y))), 
!x for (out.x --, SKIP). 

Thus the example B l could have been written 

B l = *(?x: T --~ !x), 

or, using the definition of the iteration operator, 

B l = i~p.(?x: T ~ !x;p).  

Let us define the bound of a buffer (if it exists) to be the minimum number of  
items it can contain and refuse to input any further item. Thus, B l is a buffer with 
bound I. An unbounded buffer can be defined by an infinite set of  mutually 
recursive equations, indexed on the current content of the buffer, which starts 
empty: 

BUFF<> = (?x: T --~ BUFF<x>), 
BUFFs <x) = (?Y: T ~ BUFF<y)s<x)) D (Ix;BUFFs). 

The process (P >> Q) is one in which everything output by P on channel "out" is 
simultaneously input by Q on channel "" "" m , and all such communications are 
concealed from their common environment. Thus all external communication on 
channel "in" is received by P and ignored by Q, and all external communication 
on channel "out" is sent by Q and ignored by P. Communication between P and 
Q is achieved by transforming each event "out.x" of P and each event "in.x" of Q 
to the same event x. This is achieved by applying the function strip~ that removes 
channel name m from messages: 

strip~(x)  = t, if x = m.t, 
= x, otherwise. 

Assuming that T is finite, we may define 

(P >> Q) = [((stripou,(P)) ignoring out.T)II ((strip,,(Q)) ignoring in.T)l\T. 

We normally only use the operator >> for processes whose traces are built from 
events in.t and out.t for t E T. This operation can be thought of  as chaining the 
two processes together. 

The operator >> is partially associative: provided the traces of  P, Q, and R are 
all contained in the set (in. T U out. T)* and there is no possibility of an unbroken 
infinite sequence of hidden internal communications in either P >> Q or Q >> R, 
then we have the identity P >> (Q >> R) = (P >> Q) >> R. Note that the associative 
law always holds when P, Q, and R are buffers, since any infinite sequence of 
internal communications in P >> Q could only arise from P outputting an infinite 
number of items after it had only input a finite number, which no buffer can do. 

Understandably, there is a close relationship between buffers and the chain 
operator; there are several interesting results that demonstrate this. For example, if 
P and Q are two processes such that traces(PIT Q) _c (in. T u out. T)*, then whenever 
two of the processes P, Q and P >> Q are buffers, so is the third. This result can be 
used both to justify the construction of  large buffers from smaller ones and to 
prove buffers correct by various means. 

For example, a buffer with bound 2, which stores two portions, may be defined: 

B 2 = B 1  >>BI.  
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In general, a buffer Bn that stores n portions is defined inductively: 

B! = BI, 
Bn+l = Bn >> B 1. 

Two unbounded buffers may be defined: 

B® = up.(?x: T - - .  ( p  >> !x;B1)), 
B* = up.(?x: T ~ ( p  >> !x;p)). 

Two buffers whose capacities grow steadily in proportion to the number of  items 
they have output may be defined: 

B* = up.(?x: T --. (B1 >> !x;p)) 
B' = ~p. (Bl  >> (?x: T - -*  !x;p)). 

A buffer that may have any bound or none can be defined: 

B~ = ~p.(B1 I1 (?x: T - -*  ( p  >> !x;Bl))) .  

Note that it is not possible to define in our model a buffer with a nondeterminist- 
ically chosen finite bound, without also allowing an unbounded buffer as an 
implementation. This is because there is no finite test that could demonstrate that 
a buffer is unbounded. 

The following identities may be proved by various methods: 

(a) B* --- B= = BUFF~ >, 
(b) (Boo >> B®) = (Bn >> B®) = (B® >> B.) = Boo, 
(c) (Bn >> Bin) = Bn+m, 
(d) (BUFFv >> BUFFw) = BUFFvw, 
(e) B* -- B'. 

There are more interesting connections between buffers and the chain operator. 
One of these states that whenever P >> Q is a buffer, so is ?x: T ~ (P >> !x;Q). 
This result can be extended recursively in several ways: for example, it can be 
shown that if two processes P and Q satisfy the equation 

P >> Q = ?x: T---~ (P >> !x;Q) 
then P >> Q is a buffer. A generalization of  this last result is discussed in the 
Appendix, which also contains proof methods for establishing the above results. 

Let f :  T* ~ T* be a prefix-preserving function on strings; that is, f(s) is always 
a prefix off(st). A process P is said to be a pipe f o r f i f  it satisfies the law 

$ p----~ Q ~  
s E (in. T t_J out. T)* & 
(s rout ___ f(s Iin)) & 
(s rout = f(s tin) =~ initials(Q) --- in. T) & 
(s rout ~ f(s tin) ~ initials(Q) N out.T ~ •). 

Thus a buffer is just a pipe for the identity function. I f P  is a pipe f o r f a n d  Q is a 
pipe for g, then (P >> Q) is a pipe for (go f) .  A simple example is a pipe for the 
sine function: 

SIN - *(?x:REAL ~ !sine(x)), 
and so are (SIN >> B3), (B8 >> SIN), etc. 

Suppose now a MASTER process requires to use the SIN process to compute 
sines, using a channel named sin. It sends the argument x by sin!x (an abbreviation 
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for (sin.in.x ---, SKIP)), and it inputs the result by (sin?y: REAL ---, P(y)), which is 
also an abbreviation for something similar. (Note the coding trick that assimilates 
output by the master with input by the slave.) The required effect can be achieved 
by the combination 

[sin:SIN II MASTER]. 

A pipe for the tangent function can be defined: 

[sin:SIN II [cos:COS II TAN]], 

where COS is defined similarly to SIN, and where 

TAN -- *((?x: REAL --~ sin!x); 
(sin?y: REAL --~ (cos?z: REAL --~ !(y/z)))). 

A process is said to be a variable (of type T) if it is always prepared to input a 
new value, and, once it has been initialized, it is always prepared to output the 
value it has most recently input; that is, for all Q, 

$ 
P ---* Q ~ (s Iin = ( ) ~ initials(Q) = in. T) & 

(srin # ( ) =,  initials(Q) = (in.T O lout.t})), 

where 

t = l a s t ( s  t i n ) .  

A process definition satisfying these laws is 

VARr = (?x: T --, Vx), 

where 

Vx = (?y: T ~ Vr) D (!x;Vx), for all x ~ T. 

Vx is the behavior of a variable with initial value x. A fresh local instance of such 
a variable can be declared thus: 

[m:VARr II MASTER]. 

A stack (for type T) is a process P that outputs everything that it has input, on 
a last-in, first-out principle; and outputs the signal "isempty" when empty. It obeys 
the law 

$ 

P.--, Q ~  
(length(s tin) = length(s rout) =.  initials(Q) = (in.T u {out.isemptyl)) & 
(length(s tin) > length(s rout) =,  in.T ___ initials(Q) 
& initials(Q) N out. T # ~). 

A trace s of a stack satisfies the condition 

Vt ___ s.length(t tin) >_ length(t rout) 

and the number of items on the stack after this trace is simply 

size(s) = length(s tin) - length(s rout); 

if this number is zero, the stack is empty. If u(out.x) is a trace of a stack, then u 
can be written in the form s(in.x)t, where t is a stack trace with size (t) = 0. This 
corresponds to the last-in, first-out property. 
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Three different implementations of a stack can be modeled on three different 
implementations of the COUNT register. We hope the reader will enjoy construct- 
ing them. 

6. Conclusions 
We have introduced a mathematical model for a powerful language of  communi-  
cating processes, and demonstrated that the model enjoys many elegant mathe- 
matical properties. In our examples we showed thatsome interesting problems can 
be tackled in our model, and we outlined some proof techniques that may be used 
to prove properties of processes defined in the model. Our work can be seen as a 
step toward providing a tractable semantic model for parallel processes. 

Several alternative approaches to the problems of parallelism have been proposed, 
and our work is most closely related to Milner's calculus of communicating systems 
(CCS) [20] and the work of the Edinburgh group (e.g., [9, 11]). Several authors 
have reported recently on connections between the underlying semantic models of  
CCS and CSP, notably Brookes [3] and Hennessy and de Nicola [10]. The 
relationship with Kennaway's work [ 15] is discussed in [2]. As we remarked earlier, 
our failures model is a direct extension of earlier models based on traces [12, 13] 
that were unable to cope properly with nondeterminism. The chief advantage the 
failures model appears to have over most other attempted approaches derived from 
traces (e.g., possible futures [25]) is its mathematical tractability. 

The proof techniques of our paper, and those of [23], have been successfully 
applied to many interesting parallel programming problems. The mathematical 
elegance of our model helps considerably in such endeavors. Although, as yet, our 
proof methods are relatively informal, there are grounds for hope that powerful 
formal proof systems can be developed based on our semantic domain [2, 4, 21]. 
Formal proof systems for tracelike models already exist [6, 29]; Hoare-style proof 
systems for CSP [ 1, 17] are also well known. 

Our model is very well suited to reasoning about the problems associated with 
deadlock. A related problem is divergence, which arises when a process performs 
an unbounded sequence of internal actions without responding to the requests of 
its environment. This problem has been touched upon briefly in this paper; for 
example, in the treatment of iteration and hiding. However, it can be argued that 
the present model does not cope entirely adequately with divergence. Extensive 
discussions of these points can be found in [2] and [23]. Future work will show 
that the model and associated proof rules can be simply adapted to give a 
satisfactory treatment of divergent processes [5]. In addition, the model can be 
adapted to cope with imperative parallel languages [24]. A similar attempt based 
on traces was made in [8]. 

Although we presented our semantics in denotational style, the failure sets of 
compound processes being built up from the failures of their components, our 
alternative formulation based on transitions can be developed into an operational 
semantics in the style of [ 11 ] and [22]. This issue will be elaborated in [5]. 

7. Prospects 
The original objective of denotational semantics was to provide a clear, consistent, 
and unambiguous definition of a programming language that is likely to have more 
than one implementation. Such a definition could serve usefully as a national or 
international standard; it would give a precise specification that must be met by 
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each implementor; and it would tell each programmer exactly what he can rely on 
in all implementations. Thus it would achieve the primary objective of standardi- 
zation, namely, the reliable conjunction of programs and implementations from 
widely differing sources. The deficiencies of existing language standards can be 
directly attributed to their failure to take advantage of this known technologyma 
failure that to future generations will probably seem amazing. In the area of parallel 
programming languages, we hope that the development of a suitable semantic 
model at an early stage will forestall a repetition of the problems that have beset 
the development and standardization of sequential programming languages. 

Apart from the improved quality of programming language standards, the 
techniques of mathematical semantics have much to offer in improving the quality 
of computer programs. In the first place, they offer the possibility that an imple- 
mentor can prove with mathematical rigor that his implementation meets the 
standard specification of the language. Clearly, no program can be more reliable 
than the implementation of the language in which it is expressed for input to a 
computer. 

A second advantage of a mathematical description of a programming language 
is that it offers the individual programmer the opportunity to prove the correctness 
of his program with respect to some description of its intended behavior. For this, 
he would need to identify the mathematical object denoted by his program, and 
then prove that this object exhibits the required mathematical properties. Unfor- 
tunately, this method of program proving is impractically laborious; it is like trying 
to solve differential equations using only the original definitions of derivatives in 
the epsilon-delta terminology of analysis. What is required for practical program 
development and proof is a formal calculus, similar to the assertional calculus for 
sequential programs, that will permit a reasonably direct expression of the purpose 
of each command, and a method of proving that it meets its purpose. Such a 
calculus must be firmly based on a proof of its conformity with an appropriate 
mathematical model, just as the differential calculus can be ultimately based on 
the Dedekind model of real numbers, and as Hoare-style logics for sequential 
languages can typically be based on a conventional state-transformation semantics. 
But these are topics for future research. 

Appendix 
This Appendix contains proofs of some of the results stated in the paper. The 
selection of example proofs provided here is intended to be illustrative of our 
general methods and techniques. More extensive accounts and proofs of all of the 
results in the paper will be found in either Brookes [2] or Roscoe [23]. 

After recalling the definition of a process as a set of failures satisfying a number . . . . .  ()  . 
of condmons, we show that the nondetermlnlsm ordering ----> gwes the space of 
processes the structure of a complete semilattiee. This fact was used, together with 
the continuity of all operations used in the paper, to justify our use of recursively 
defined processes. Next we prove some properties of parallel composition: hiding 
and inverse image. Finally, we introduce a proof method, based on fixed-point 
induction, for reasoning about recursively defined processes; we show how to 
establish in this way the properties of some of the example processes of Section 5. 

A process is a subset P C A* x ~(A) satisfying the conditions: 

(PI) (s, X) E P ~ X i s  finite, 
(P2) ( ( ) ,  ~) E P, 
(P3) (st, ~) ~ P =. (s, ~) E P, 
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PROOF. Let 
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(P4) Y . C _ X & ( s , X ) E P ~ ( s ,  Y ) E P ,  
(P5) (s, X) ~ e & (s( c), 0)  q~ P =, (s, X U {c}) E P. 

Let M be the set of all such processes. 
For a trace s E A*, the transition relation on processes is defined: 

p - - ~  a 0 ,  a c_ {(t, x) l (s t ,  x )  E el. 

In particular, 

p ~--~ Q c~ Q C__ p, 
( )  . . 

so that ~ is just the superset relation. I f P  # Q and P ~ Q we say that P is more 
nondeterministic than Q. { ~ . 

Since any collection of sets is partially ordered by the superset relation, ~ is a 
partial order on M: 

p ~.~..~) a ~-..~) e co e =  a, 

Now we show that the union of any non-empty set of processes is again a process, 
and that the intersection of any directed set of processes is a process. This will 
establish the fact that the space (M, J--~) ) is a complete semilattice. 

The union of any nonempty set of  processes is a process. 

be a nonempty set of processes, and let P = U ~, so that the 

(s, X) E P ~ 3Q E ~.(s, X) ~ Q. 

We need to verify that P has the properties (P1)-(P5). This is straightforward. By 
way of illustration, consider (P5). Suppose 

(s, X) ~ P & (s(c), f~) q~ P. 

By definition of P, there is a process Q ~ ~ with 

(s, X) E Q & (s(c), ¢~) q~ Q. 

But Q, being a process, has property (P5), which gives 

(s, X U {cl) E Q, 

and hence, since Q E ~, it follows that 

(s, x u {cl) e P, 

as required. The remaining properties are established similarly. I"1 

Definition 1. A set ~ of  proceses is directed if it is nonempty and 

VQ~, Q2 ~ ~.3R E ~.(Q, ~ R & Q2 ~ R). 
THEOREM 2. The intersection of any directed set of  processes is a process. 
PROOF. Let ~ be directed and let P = I'3 ~, so that 

(s, X) ~ P ¢* VQ ~ 2.(s, X) ~ Q. 

Again we must prove that P satisfies conditions (P1)-(P5). Again we give details 
only for (P5). Suppose 

(s, X) E P & (s(c), 0)  q~ P. 
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This means that 
VQ E ~.(s, X) ~ Q, 

but there is a process Q, ~ ~ such that 
(s(c), 0) ~ O,. 

We want to prove that (s, X U {c}) E P, and this will be true unless there is a 
process Q2 E ~ with 

(s, X U [c]) $ (22. 
If such a process existed, we would be able to use directedness to find a process 
R E ~ such that 

Q, ~--~) R & Q2 ~--.~) R, 
that is, R C__ Q, N Qz. But then we would have, by our previous assumptions, 

(s,X)~ R, 
(s(c), ~) ~ R, 

(s, X o IcD ~ R. 
If R is a process, this would contradict (P5). There cannot, therefore, be any such 
process; and it must be the case that 

(s, X O {c}) E P, 
as required. That completes the proof. [] 

The parallel composition of two processes P and Q was defined 

PII Q= {(s, X U  Y)I(s ,X) E P & (s, Y) E Q}. 
Next we show that this is a well-defined operation on processes, and then we 
establish its continuity. 

THEOREM 3. I f  P and Q are processes, so is P II a. 
PROOf. (PI)-(P3) are trivial. For (P4), let (s, Z) E PII Q & Z '  __. Z. We want 

to show that (s, Z')  ~ P II Q. By hypothesis, there are sets X and Y such that 

Z = X U Y ,  ( s ,X )~P ,  ( s , Y ) E Q .  
Let X'  = X N Z ' ,  Y' = Y N Z ' .  Then we have 

Z' = X'  U Y', (s, X')  E P, (s, Y') ~ Q, 
using (P4) for the processes P and Q. It follows by definition that (s, Z ' )  E Pll Q, 
as required. 

For (P5), suppose that (s, Z) E P II Q and that (s(c), f3) q~ P II Q. Again let X and 
Y be such that 

Z = X U  Y, ( s ,X )EP,  (s, Y )EQ.  
Since s(c) is not a trace of P II Q, it cannot be a trace of both P and Q. Without 
loss of generality, assume it is not a trace of P. Then we have 

(s, X) E P & (s(c), 0) q~ e. 
By (P5) this gives (s, X O {c]) E P, from which we deduce that 

(s, X U {c} U Y) E P II Q. 

That completes the proof. [] 
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Parallel composition is a symmetric operation. In order to prove continuity of  
this operation, it is only necessary to establish continuity in one argument. 

THEOREM 4. Parallel composition is continuous. 

PROOF. Let (P,I n ___ 0) be a chain of processes with limit P -- A,Pn. Let Q be 
any process, w e  must show that 

P II Q = n , (P .  II a) .  

It is easy to prove from the definitions that 

P tl Q c n . (P ,  II a) .  

The converse is more difficult. Suppose (s, Z) is a failure of n.(P. II a) ;  choose sets 
X,,  )1, accordingly, so that 

Z = X . U  Y,, ( s , X , ) E P . ,  (s, Y , ) ~ Q ,  

for all n >_ 0. Since Z is a finite set and the X, and Y, are subsets of  Z, the list of  
pairs (X,, Y,) contains only finitely many distinct pairs. Some pair, say (X, Y), 
must occur infinitely often. For this pair we have 

Z = X U  Y& (s, Y ) ~  Q, 

and also, for infinitely many n, (s, X) E P,. Since the P, form a chain, this means 
that (s, X) E P. Putting these results together, we have 

Z = X U  Y, ( s , X ) ~ P ,  (s, Y ) E Q ,  
and hence (s, Z) E P II a.  This shows that every failure of A~(P, U Q) is also a 
failure of P II Q, as required to complete the proof. [] 

The hiding operation \b  on traces simply deletes all occurrences of the event b. 
It may be defined inductively on the length of traces: 

( ) \ b = ( ) ,  
(s(c))kb = skb, if c = b, 

= (skb)(c), if c ~ b. 

It is easy to see that (st)kb = (skb)(tkb) for all s and t. 
The hiding operation on processes was defined 

Pkb = {(s\b, X) I(s, X U {b}) E P} 
o {((s\b)t, X) I Vn.(sb", C)) E P & (t, X) E CHAOSI. 

The following lemma will be useful in proving the well definedness of hiding. 

LEMMA 1. I f  P is a process, then 
(s, ~)  E P ~ (skb, 0)  E e \b .  

PROOf. There are two cases to consider. If (sb", 13) ~ P for all n, then by 
definition we see that ((skb)t, X) ~ Pkb for all t, X. In particular, therefore, 
(s\b, f~) E P\b. The other case is when there is an integer n such that (sb n, 0)  E P 
but (sb "+', ~) q~ P. By (P5) this gives (sb", {b}) E P, from which it follows that 
((sbn)kb, 0) ~ Pkb. Since (sb")kb = skb, the result follows. [] 

THEOREM 5. I f  P is a process so is Pkb. 
PROOF. (PI)-(P4) are straightforward, using Lemma 1 and elementary proper- 

ties o f \ b  on traces. For (P5), let (u, X) E P\b  and (u(c), 0)  q~ Pkb. The ease when 
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c -- b is easily dealt with, so suppose c # b. There are two possibilities for (u, X): 

(1) 3s.s\b = u & (u, X U Ib}) ~ P, 
(2) 3s.s\b <_ u & Vn.(sb", 0)  ~ P. 

But (2) can be ruled out, because in this case we would get (u(c), 9)  E P \b  too, 
contradicting our assumption. We may therefore assume that there is a trace s such 
that 

s \b  = u & (s, X U {b}) E P. 

If(s(c),  9 )  E P, then by Lemma 1 we would have 

((s\b)(c), 0)  = (u(c), 9)  ~ P\b, 

contradicting our hypothesis. Thus, (s(c), 9)  qi P. But we know that (s, X tO [b}) 
E P, so (P5) gives (s, X u {b, cl) E P\b,  as required. [] 

The operation of removing all occurrences of a particular event from a trace is 
deafly commutative and idempotent: 

(skb)\c = (skc)\b, (skb)kb = skb. 

When hiding a set B = {b~, . . . ,  b,} of events, therefore, the order of deletion is 
irrelevant; we write 

skB - ( . . .  ( skb0 . . . ) \b , .  

For consistency with this notation, we adopt the convention that 

S \ ~ =  S. 

It is easily seen that for any pair of finite sets B and C, 

(skB)\C = sk(B U C). 

Before we derive similar results for the hiding operation on processes, we need a 
technical lemma. 

LEMMA 2. Let B be a finite set of  events and w be a trace. I f  (s,I n >_ O) is a 
sequence o f  traces such that for a# n, 

snkB <_ w, 

then either infinitely many of  the s, are equal, or there is a trace s and an increasing 
sequence o f  traces tk E B k, such that, for all k, Stk is a prefix of  some s,. 

PROOF. Since w has finite length, it has only a finite number of prefixes. 
At least one of its prefixes must, therefore, be generated by applying kB to in- 
finitely many of the s,. So there is a trace w' _< w and an infinite subsequence 
(s, k ] k >_ 0) such that for all k, 

S n k \ B  = w '  <_ w .  

Without loss of generality (replacing w by w' and sk by s,k), we can assume that 
for all n, 

s, kB--- w. 

This does not affect the conclusion of the lemma, but simplifies the argument. Let 
the trace w be 

w = a l a 2  " . .  ar ,  
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where each a, ~ A. Each s, must have the form 

s,  = u~°)alu~ ') . . .  arug ), 

where each u~ ) E B*. But B is a finite set and the events a, . . .  ar are fixed. If the 
sn are bounded in length only finitely many of them can be distinct, since there is 
only a finite number of distinct traces of  any fixed length having this form. In this 
case, then, some trace s occurs infinitely often in the sequence (s,  I n ~ 0) and we 
have the first alternative. In the case when the s,  are unbounded in length, there 
must be a position z at which the u~ ) terms (n ___ 0) are unbounded in length. Taking 
i to be the smallest such index, we can apply the above argument to the traces 
obtained by truncating the s, at this position. This time we deduce that there is a 
trace s and infinitely many n such that 

SU(~ ) < Sn. 

Since the u~ ) ~ B* appearing here are unbounded in length, and since B is finite, 
we can use Konig's Lemma to deduce the existence of  an increasing sequence 

u (') < "(') k > O. ?/k ~ n k + l '  

Putting tk equal tO the length k prefix of u(~'~, we get an increasing sequence 
(tkl k >_ O) with 

Stk <- Sn~ & tk E B k, 

as required for the second alternative. That completes the proof. [] 

THEOaEM 6 

( ekb ) \ c  = {((skb)\c, X) I (s, X U {b, c}) ~ P} 
U {(((skb)kc)t, X) I Vn :lu ~ {b, c}".(su, 0 )  E P & (t, X )  ~ CHAOS} 

PROOF. It is easy to check that every failure of the right-hand side is also a 
failure of  (P\b) \c .  For the converse, let (w, X )  E (Pkb)\c.  We must show that 
either 

(1) 3s . ( s \b ) \ c  = w & (s, X U {b, cl) E P 

o r  

(1') 3s . ( s \b ) \ c  <_ w & V n 3 u  ~ {b, c}"(su, 0 )  E P. 

Since (w, X )  E (PXb)\c, we have either 

(2) 3 t . t \ c  = w & (t, X U  {c}) E PXb 

o r  

(2') 3t.tXc < w & Vn.(tc", 0 )  E Pkb. 

First consider case (2). Let t be a trace such that t \ c  = w and (t, X U {c}) E PXb. 
By definition of  PXb this means that either 

(3) 3 s . s \ b  = t & (s, X U {b, c}) E P 

or 

(3') 3 s . s \ b  <_ t & Vn.(sb", 0 )  E P. 

But since tkc = w it is clear that (3) ~ (1) and (3') ~ ,  (1'). It remains to consider 
case (2'). Now let t be a trace such that t \ c  <_ w and (tc", 0 )  E Pkb for all n. This 
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means that for each n, either 

(4) 3Sn.S.\b = tcn & (s,, {b}) E P 

o r  

(4') 3s , . s . \ b  <_ tc" & Vm.(snb m, 0 )  E P. 

If (4') holds for any n we can repeat the argument of case (3') to show that 
(1 ') holds. The only remaining possibility is, therefore, when there is a sequence 
(s, [ n ___ 0) such that for all n, 

(5) 
Since tXc <- w, we also have 

s,kb = tc" & (s,, {b}) E P. 

Vn.(s . \b) \c  ~_ w, 

and we may apply Lemma 2 with B = {b, cl. From (5) we see that it is impossible 
for infinitely many of the s, to be identical because 

length(s,) >_ length(t) + n. 

There must be, therefore, a trace s and a subsequence (s, k I k _> 0), and an increasing 
sequence of traces Uk E B k such that 

Yk.SUk <--- s, k. 

But for each k we also have from (5) 

s.k\b = tc" & (s. k, {b}) E P. 

Hence we have (skb)\c  <- w and, using (P3) and (P4), 

(s.~, 0 )  ~ P ~ (SUk, 0 )  ~ P. 

Thus we have established (1 '). That completes the proof. [] 

Notice that the expression derived here for (P\b)kc  is symmetric in b and c, and 
that putting b -- c produces again the failure set for P\b.  It follows that hiding is 
commutative and idempotent: 

(P \b ) \ c  = (Pkc)\b,  (Pkb)kb -- Pkb. 

We may therefore write 

PkB = ( . . . ( P k b , ) . . . ) \ b ,  

for any finite set B = [b~ . . . . .  b,}. Again we adopt the convention that 

P \ O  = P. 

It is clear that for any pair of  finite sets B and C, 

( P k B ) \ C  = Pk(B U C). 

Lemma 2 is also applicable in the following proof. 

THEOREM 7. Hiding is continuous. 

PROOF. Let {P, [ n _> 0) be a chain of processes with limit P. We must show 
that 

n.(P.kb) = PXb. 
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As usual, one inclusion is easy: 

Pkb C_ fl,,(P.kb). 

For the converse, let (u, X) ~ N.(P.kb); we need to prove that (u, X)  E Pkb. For 
this, we require either 

(1) 3s . skb= u & ( s ,  X U  {bl)EP,  

o r  

(1') 3s . s \b  <- u & Vn.(sb", 0)  E P. 

By hypothesis, (u, X) E Pnkb for each n, so there is a sequence (s, I n ~ 0) of  traces 
such that for each n, either 

(2) s ,kb= u & ( s , , X U  [ b l ) E P , ,  
o r  

(2') s,kb <_ u & Vm.(s,b m, 0)  E P,. 

One of these conditions must hold for infinitely many n, and hence (by the chain 
condition) for all n. In either case Lemma 2 is applicable, with B - {b}, and we 
treat separately the two possible conclusions. The first case is when infinitely many 
of the s, are identical to some trace, say s. Rewriting (2) and (2'), we have either 

(3) skb = u & (s, X U [b}) ~ P, for infinitely many n, 
or 

(3') s \b  <_ u & Vm.(sb", 0)  ~ P,, for infinitely many n. 

Now the chain condition shows that (3) =* (1) and (3') =0 (1'). The second and 
final case is when the s, are of unbounded length; we know in this case that there 
is a trace s and an infinite subsequence (s, k I k _ 0) such that 

sM <_ s,k, for all k. 

From either (3) or (3') we can deduce (using (P3) and (P2)) that 

skb <_ u & (sb k, 0)  E P,~, for all k. 

But then for each k it is clear that (sb k, 0)  ~ P, for infinitely many, and hence for 
all, n. Thus, 

skb <_ u & Vk.(sb k, 0)  E P, 
as required for (1 '). That completes the proof. [] 

In Sections 4.7 and 4.8 we introduced renaming operations, which are total 
functions from events to events. For any such operation f we use the same name 
for the extension of f to a function on traces and for the pointwise extension o f f  
to sets: 

f ( (c ,  . . . .  , e,)) = (f(c,) . . . .  , f (c ,)) ,  
f ( x )  = I f (x )  l x x l .  

Similarly we write 

f - ' (b)  = {a 
f - ' ( t )  = Is 

f f ' ( X ) - -  {a 

E A If(a) = b}, 
A* If(s) = tl, 

E A If(a) E XI. 
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The inverse image of  a process P under f i s  defined: 

f-~(P) = {(s, X) I (f(s),f(X)) E P & X finite}. 

Using the elementary facts that 

f ( ( ) )  = (), f(st) =f(s)f( t) ,  
f ( o )  = o,  y c_ x = f ( D  c_ f ( x ) ,  

it is easy to verify thatf-~(P) is a process whenever P is. We now prove a connection 
between the hiding operation and inverse image. In this theorem we assume that f 
has the finite pre-image property. 

THEOREM 8. Let f be a renaming operation and let B be a finite subset of  the 
range o f f  Then, for all processes P, 

f - l (p~B)  = f - ' (P) \ f - ' (B) .  

PROOf. Let C = f - ' (B) .  Since B is a subset of  the range of f ,  we know that 
f (C)  = B. If B is empty there is nothing to prove, since f-~(~) = O and 
PXO = P. Assume therefore that B is nonempty. The proof relies on a simple 
lemma: for all t and s, 

tkB =f ( s )  ¢* 3u.t = f ( u )  & uXC = s. 

Note the corollary that f (ukC) = f(u)kB. Now suppose (s, X) is a failure of 
f - I ( p ) \ c .  We show that (s, X) is also a failure off-~(PkB). By definition o f f - I ( p ) \ c  
we have either 

(1) :lu.u\C = s & (u, X U C) E f-I(P), 

or 

(2) Hu.u\C <_ s & VnHw ~ C".(uw, 0)  E f - ' ( P ) .  

In the first case we have 

Hu.u\C = s & (f(u), f (X)  U f(C)) E P 
Ht.tkB = f(s) & (t, f (X)  O B) E P. 

But this implies (f(s), f (X))  E PkB, and hence (s, X) E f - ' (PkB),  as required. In 
the other case we have 

3u.uXC <_ s & V n 3 w  E C".(f(u)f(w), 0)  ~ P. 
But w E C" ~ f ( w )  E B", so (putting t -- f(u), v --f(w)) we get 

3t. tkB <_ f(s) & Vn3v  E B".(tv, ~) E P. 

This again implies that (f(s),f(X)) ~ PkB, and again (s, X) ~f-~(PkB).  So far we 
have shown that 

f - l ( p ) \ c  ~ f - l (p~B) .  

The converse is established in the same way, to complete the proof. [] 

The fifth section of  this paper introduced a few of the types of  results that can 
be proved of  processes defined in our model. Many of these results have long and 
technical proofs, so it is not possible here to prove all of them in detail. What we 
can do is to indicate some of the methods that can be employed in proving such 
results, and illustrate our methods by applying them to some of the simpler 
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examples. A much more extensive exposition of these topics can be found in 
Roscoe [23]. 

The results quoted earlier fall into two basic categories. First, we have the general 
technical results, the main examples of which were the following: 

(i) partial associativity of >>; 
(ii) if two of P, Q and P >> Q are buffers, then so is the third; 

(iii) i f P  >> Q is a buffer, then so is ?x: T--* (P >> !x;Q); 
(iv) i f P  is a pipe f o r f  and Q is a pipe for g, then P >> Q is a pipe for g o f  

Results of this type must be proved by analysis of the definitions involved, much 
as in the proofs of the results from Sections 3 and 4. This analysis is much assisted 
by such lemmas as the following: 

LEMMA 3. I f  traces(PA Q) c. ( in .TO out.T)*, then 

P >> Q = {(s, (X n in.T) to ( Y  n out.T) tO Z) [ 3u, v. s ~ filter(u, v) & 
(u ,X)  E e & (v, Y) E Q & 
(Xlout  tO YIin) = T & 
Z is finite & Z C (in. T U out. T)} 
U {(st, X) I 3 ®(u, v). s E filter(u, v) & 

(u, 0)  E P & (v, ~) ~ Q & (t, X) ~ CHAOS}, 

where 

filter(u, v) = {s E (in.T U out.T)*l sl in = ulin & 
s rout -- v rout & u rout = v tin}. 

Here the notation X is used for the complement of a set. Note that Lemma 3 
states that in the combination P >> Q the left-hand process P has control over the 
input events and the fight-hand process Q controls the output. The traces s of 
P >> Q are obtained from traces u of P and v of Q that agree on the internal 
communications (u lout = v tin), by filtering out the output events of  u and the 
input events of v. We omit the proof of  this result, as it is a direct consequence of 
the definition of the >> operator. Once this and similar lemmas have been 
established, the proofs of the four theorems (i)-(iv) above are, although long, not 
too difficult. 

The second group of results are those which we wish to prove of individual 
processes, such as 

(v) Co = COUNT; 
(vi) Boo is a buffer. 

Proofs of such results are obtained by application of technical results of the 
above type together with analysis of the recursive constructions used in the 
definitions of the processes involved. Recall that a recursively defined process is 
either the least fixed point of some function from processes to processes or, when 
mutual recursion is used, a component of  the least fixed point of  some function 
defined on a product space of processes. Our analysis of recursive constructions 
will be helped by first defining a standard means of approximating the behavior of 
a process. 

I f P  is a process, define P~n, the restriction of P to n steps, to be 

{(s, X) I length(s) < n & (s, X) E P} U {(st, X) I s ~ traces(P) & length(s) = n}. 
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P~n is the process that behaves exactly like P for n steps, and then dissolves into 
CHAOS. The following easily proved identities hold for processes P and Q, and all 
natural numbers m, n. 

P~0 = CHAOS, 
(P~n)~m -- P~min(m, n), 

pJ, n <-..~> p, 
(Vn.P~,n ~- Q,[n) =, P = Q. 

Thus, for example, any process is determined uniquely by its restrictions to finite 
depth. Indeed, the sequence (P~,n I n > O) is always a chain with limit P. 

Suppose F is a function from processes to processes. If F is continuous, we know 
that its effect on any process P is uniquely determined by its effect on the finite 
restrictions of  P." 

F(P) -- I IF(e~n). 
B 

We say that F is nondestructive if for all P 

F(P)~n = F(P~n)~n, 

and constructive if 

F(P)I(n + 1) = F(P~n)~(n + 1). 

Informally, a nondestructive function can be regarded as producing results whose 
n-step behavior depends only on the n-step behavior of  its operand; similarly, a 
constructive function produces results whose n + 1-step behavior depends only on 
the n-step behavior of  its operand. Note that every constructive function is also 
nondestructive. 

These results and definitions generalize in the obvious way to functions of  more 
than one argument. Let us write M A for the product space whose elements are 
vectors of  processes indexed by a set A. (M A is isomorphic to the function space 
A ---> M, where M is the space of  processes). A typical element o f M  A can be written 
(Px I X ~ A), and if/~ ~ M A we will denote the X-component of /~ by Px. The 
definition of  restriction ~n on product spaces is simply: 

(Pxl X E A)~n = (Px~n I X E A). 

A function of  more than one argument can be constructive or nondestructive in 
any or all of  its arguments. For example, a two-place function F : M  x M ~ M 
is constructive in its second argument if for all P and Q and all n we have 
F(P, Q)J,(n + 1) = F(P, Q ln ) , (n  + 1). 

Of  our existing operators, (a ~ .), I'l, Iq, II, III, ;, f -~,  f,  and a.( ) are all 
nondestructive in each of  their arguments, and (a ~ .), (x: T ~ .) and 
(?x: T ~ .) are all constructive. The last two of  these operators can properly be 
regarded as functions from M r to M. 

The following results are not hard to prove. 

(i) If F:  M A ~ M a and G: M a --~ M ° are nondestructive, then so is GoF; if in 
addition one o f f  and G is constructive, then so is GoF.  

(ii) If F : M  A --~ M ° and G : M  A ~ M a are nondestructive (construc- 
tive, respectively) then so is the function H: M x --~ (M ° x M a) defined H(/~) = 
(F(P), G([')). 

(iii) If F : ( M  a x M A) ---> M A is nondestructive in its second argument and 
nondestructive (constructive, respectively) in its first argument, then the function 
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G : M  ~ - .  M A defined G(P) = g0.F(/5, 0 )  is nondestructive (constructive, respec- 
tively). 

A corollary to these results is the fact that if F is any function defined using any 
combination of our operators other than hiding, then F is nondestructive. Further- 
more, if all occurrences of an operand of F are directly or indirectly guarded, 
then F is a constructive function of that operand. For example, the function 
F: (M × M) ~ M defined 

F(P, Q) = PD(a --~ #p.(SKIP 13 PD (p;a))) 

is nondestructive in its first argument and constructive in its second. 
Now suppose that R: M A --~ [true, false] is a predicate. We will say that R is 

satisfiable if there exists some P E M A such that R(P) = true. We will say that R 
is continuous if it satisfies the condition 

V/5.ttVn.]0.(/~n = 0~n) & Rt0))  ~ RtP)). 

A predicate is continuous if and only if its truth can be determined by examining 
finite restrictions of its argument. 

Tnv.OREM 9. Suppose that F : M A ~ M A is a (monotone) constructive function 
with least f ixed point P. Suppose also that R is a continuous satisfiable predicate o f  
M A and that R is F-inductive in the sense that qO.(R(O) =~ R(F(O)). Then R([') 
holds. 

PROOF. By satisfiability of R, we can choose 0 such that R(0)  holds. It is easy 
to prove by induction on n that R(F"(O)) holds for all n. We claim that in addition 

P~n = F"(O)+n 

holds for all n. We use induction on n. 
The base case n = 0 is easy, because P&0 = 0~0 = CHAOS ̂ . 
Now suppose that P&n = F"(O)&n. Then we have 

P~(n + 1) = F(P)~(n + 1) 
--- F(P~n)~(n + 1) 
= F(F (Q)ln)~(n + 1) 
= r ( r " ( O ) ) ~ ( n  + 1) 
= F"+'(O)~(n + 1). 

since/3 = F(P), 
by constructivity, 
by hypothesis, 
by constructivity, 

This establishes the claim that P~n = Fn(O)~n for all n. Since we now have 

Vn.(R(F"(O)) & (P~n = Fn(O)~,n)) 

we can infer R(P), by continuity of R. [] 

This theorem gives us a general method for proving properties of recursively 
defined processes. Informally it tells us that if the truth of a reasonable (i.e., 
satisfiable, continuous) predicate is preserved by the function of a sufficiently well- 
defined (monotone, constructive) recursion then we may infer the truth of  that 
predicate on the least fixed point. 

In fact, it is easy to show that any constructive function has only one fixed point. 
This is a corollary to the above result when we put R(P) = (P = Q), where 0 is 
chosen to be any fixed point ofF.  This R is continuous and satisfiable, and satisfies 
R(P) ~ R(F(P)). It follows that the least fixed point is identical to 0, and hence 
that there is a unique fixed point for F. 
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Theorem 9 can be generalized to certain nonconstructive recursions that can be 
proved independently to have unique fixed points. The class of  allowable predicates 
in such generalizations may need to be different from the one used above. 

The class of  continuous predicates is large. A few examples are listed below for 
functions of a single variable. 

LEMMA 4. The following predicates are continuous. 
(i) R(P) -- (P = Q), any Q, 

(ii) R(P) ( < " ~)'  
(iii) g(P) (Q--~P),  
(w) "P is a buffer," 
(v) P is free from deadlock (=- Vs.-~(P --~ STOP)), 

(vi) Vs ~ traces(P).~(s) (~b any predicate on ~,*), 
(vii) A,~IR,(P), all R, continuous, 

(viii) RI(P) V R2(P), Rl, R2 continuous. 

We are now sufficiently well equipped to be able to tackle some of our examples. 
The first example will be to prove that ZERO = COUNTo. 

Recall that the COUNT processes are defined by means of  the following function 
F from M s --~ M ~, where N is the set of  natural numbers: 

where 

Qo = (iszero ---> Po) D (up --* P0, 
Qn+l = (down ---> P~) D (up --* Pn+2). 

Let COUNT = (COUNT~ I n E N)  denote the least fixed point o fF .  We wish to 
show that COUNTo = ZERO, where ZERO satisfies 

ZERO = (iszero ~ ZERO) D (up ---> POS; ZERO), 
POS = (down ~ SKIP) 13 (up ---> POS; POS). 

We will prove the following predicate of COUNT 

R(P) = Vn.Pn = POS~;ZERO, 

where POS ° = SKIP and POS n+l = POS;POS n. This predicate on M s is easily seen 
to be continuous and satisfiable. The function F of the COUNT recursion is 
constructive, since all recursive calls are guarded. To prove R(COUNT) it is 
sufficient to prove that, for all P, we have R(/5) ~ R(F(P)); the result then follows 
by fixed point induction, using Theorem 9. To this end, suppose R(/5) holds. Let 
Q = F(P). Then we have 

Qo = (iszero ---, Po) D (up ---, PI)  
= (iszero ~ ZERO) D (up ~ POS;ZERO) 
= ZERO 

Also, by a similar argument, we have 

Q~+l = (down ~ P~) 13 (up ~ Pn+2) 

by definition of  F, 
by hypothesis that R(P) holds, 
by definition of  ZERO. 

by definition of  F, 
= (down ---> POSn;ZERO) D (up ---> POSn+2;ZERO) by hypothesis that 

R holds, 
= ((down --. SKIP) D (up ---> POS;POS));POSn;ZERO 
= POS;POS";ZERO by definition of  POS, 
= POS~+I;ZERO. 
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This shows that R(Q) holds, and completes the proof. Notice that this particular 
application of our rule can be interpreted as an instance of  the unique fixed point 
property of constructive functions. 

The constructiveness of functions is not quite so easy to establish when hiding is 
used, as is the case in recursions that use the master-slave operator [ II m:] and the 
chaining operator >>. The function 

F(Q) = [P U m:Q] 

is not in general constructive; however, some conditions can be imposed on P that 
make the function constructive. For example, if the alphabet used to communicate 
with the slave Q is B, then F will be constructive if P satisfies the condition 

s ~ traces(P) ~ length(s) _> 2 x length(s IB). 

Intuitively, this condition requires that P does not communicate with its slave too 
often between other actions. 

Similarly, the function G(P) = (P >> Q) is nondestructive, if Q is constrained to 
satisfy 

s E traces(Q) ~ length(s lout) ___ length(s tin). 

Likewise, if P satisfies the condition 

s ~ traces(P) ~ length(s Iin) _ length(s lout), 

then the function H(Q) = (P >> Q) is nondestructive. This result can be used to 
show that the function 

F(Q) = ?x: T--* (Q >> !x;Bl) 

is constructive. Then we may show that B® is a buffer by a simple argu- 
ment. Assume P is a buffer. Then (P >> B1) is also a buffer. This implies that 
?x: T---~ (P >> !x;Bl) is a buffer. Thus the predicate "is a buffer" is preserved by 
the function F above. Since B® is the least fixed point of this function, it follows 
by Theorem 9 that Boo is a buffer. 

This method of proof can be used for most of the results in Section 5 that refer 
to individual processes. In some cases, however, it is not sufficiently sophisticated. 
Several modifications to the method are possible in order to extend considerably 
the class of problems that can be tackled. In particular, it is straightforward to 
generalize to functions defined on sets of processes. 

For a set A' of processes, define A'~n = {P~n I P ~ ~g]. For a set-valued function 
F:  ~ ( M )  --* 9 ( M ) ,  say F is constructive if, for all sets of processes A" C M and 
all integers n, we have 

F(.~g)~(n + 1) = F(_g$n)~(n + 1). 

This generalizes the notion of constructiveness to functions defined on sets of 
processes. For any predicate R of M, we can apply R to a set of  processes _g in the 
obvious way; we will write R(A')  for the conjunction AetheR(P). The proof method 
based on Theorem 9 for constructive functions of M generalizes also, as follows. 

THEOREM 10. Suppose F : 9(M)---~ ~ ( M )  ts constructive and R is a continuous 
satisfiable predtcate of  M. Suppose that for all ~g C M we have 

(R(_g) ~ R(F( ~))). 

Then whenever ~g satisfies the condition ~ C_ F(_g) we can infer RGlg). 
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We sketch here an example using this method. Suppose that {(P~, Q~)I ~ ~ A} 
is an indexed set of  pairs of  processes. Suppose also that for every X E A there is a 
function gx: T---> A such that the process Px >> Qx satisfies 

Px >> Qx = ?x: T---> (Pg~x) >> !x;Qg~x)). 
If we now define an appropriate F (on sets of  pairs of  processes), we can show 
that the predicate "is a buffer" is preserved by application of the function. The 
inductive proof rule of  Theorem 10 can then be used to show that each of the 
processes Pa >> Qx is a buffer. For a more detailed proof of this result and an 
explanation of  how it can be used to prove correctness of  a wide variety of buffers, 
see Roscoe [23]. In particular, consider the general result that states that whenever 
P and Q are processes such that 

P >> Q = ?x: T---> (P >> !x;Q), 
then P >> Q is a buffer. This was stated without proof in Section 5. It is now an 
immediate corollary of  the above result, obtained by choosing the obvious gx. 
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