
365 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

The UNIX Time-
Sharing System
Dennis M. Ritchie and Ken Thompson
Bell Laboratories

UNIX is a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corpora-
tion PDP-11/40 and 11/45 computers. It offers a number
of features seldom found even in larger operating sys-
tems, including: (1) a hierarchical file system incorpo-
rating demountable volumes; (2) compatible file, device,
and inter-process I/O; (3) the ability to initiate asynchro-
nous processes; (4) system command language select-
able on a per-user basis; and (5) over 100 subsystems
including a dozen languages. This paper discusses the
nature and implementation of the file system and of the
user command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, PDP-11

CR Categories: 4.30, 4.32

Copyright © 1974, Association for Computing Machinery,
Inc. General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights. New York, Octo-
ber 15–17, 1973. Authors’ address: Bell Laboratories, Murray
Hill, NJ 07974.

The electronic version was recreated by Eric A. Brewer, Uni-
versity of California at Berkeley, brewer@cs.berkeley.edu. Please
notify me of any deviations from the original; I have left errors in
the original unchanged.

1. Introduction

There have been three versions of UNIX. The earliest
version (circa 1969–70) ran on the Digital Equipment Cor-
poration PDP-7 and -9 computers. The second version ran
on the unprotected PDP-11/20 computer. This paper
describes only the PDP-11/40 and /45 [l] system since it is
more modern and many of the differences between it and
older UNIX systems result from redesign of features found
to be deficient or lacking.

Since PDP-11 UNIX became operational in February
1971, about 40 installations have been put into service; they
are generally smaller than the system described here. Most
of them are engaged in applications such as the preparation
and formatting of patent applications and other textual
material, the collection and processing of trouble data from
various switching machines within the Bell System, and
recording and checking telephone service orders. Our own
installation is used mainly for research in operating sys-
tems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to
demonstrate that a powerful operating system for interac-
tive use need not be expensive either in equipment or in
human effort: UNIX can run on hardware costing as little as
$40,000, and less than two man years were spent on the
main system software. Yet UNIX contains a number of fea-
tures seldom offered even in much larger systems. It is
hoped, however, the users of UNIX will find that the most
important characteristics of the system are its simplicity,
elegance, and ease of use.

Besides the system proper, the major programs avail-
able under UNIX are: assembler, text editor based on QED
[2], linking loader, symbolic debugger, compiler for a lan-
guage resembling BCPL [3] with types and structures (C),
interpreter for a dialect of BASIC, text formatting program,
Fortran compiler, Snobol interpreter, top-down compiler-
compiler (TMG) [4], bottom-up compiler-compiler (YACC),
form letter generator, macro processor (M6) [5], and per-
muted index program.

There is also a host of maintenance, utility, recreation,
and novelty programs. All of these programs were written
locally. It is worth noting that the system is totally self-sup-
porting. All UNIX software is maintained under UNIX; like-
wise, UNIX documents are generated and formatted by the
UNIX editor and text formatting program.

2. Hardware and Software Environment

The PDP-11/45 on which our UNIX installation is imple-
mented is a 16-bit word (8-bit byte) computer with 144K
bytes of core memory; UNIX occupies 42K bytes. This sys-
tem, however, includes a very large number of device driv-
ers and enjoys a generous allotment of space for I/O buffers
and system tables; a minimal system capable of running the

366 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

software mentioned above can require as little as 50K bytes
of core altogether.

The PDP-11 has a 1M byte fixed-head disk, used for file
system storage and swapping, four moving-head disk drives
which each provide 2.5M bytes on removable disk car-
tridges, and a single moving-head disk drive which uses
removable 40M byte disk packs. There are also a high-
speed paper tape reader-punch, nine-track magnetic tape,
and D-tape (a variety of magnetic tape facility in which
individual records may be addressed and rewritten).
Besides the console typewriter, there are 14 variable-speed
communications interfaces attached to 100-series datasets
and a 201 dataset interface used primarily for spooling
printout to a communal line printer. There are also several
one-of-a-kind devices including a Picturephone® interface,
a voice response unit, a voice synthesizer, a phototypesetter,
a digital switching network, and a satellite PDP-11/20 which
generates vectors, curves, and characters on a Tektronix 611
storage-tube display.

The greater part of UNIX software is written in the
above-mentioned C language [6]. Early versions of the
operating system were written in assembly language, but
during the summer of 1973, it was rewritten in C. The size
of the new system is about one third greater than the old.
Since the new system is not only much easier to understand
and to modify but also includes many functional improve-
ments, including multiprogramming and the ability to share
reentrant code among several user programs, we considered
this increase in size quite acceptable.

3. The File System

The most important job of UNIX is to provide a file sys-
tem. From the point of view of the user, there are three
kinds of files: ordinary disk files, directories, and special
files.

3.1 Ordinary Files
A file contains whatever information the user places on

it, for example symbolic or binary (object) programs. No
particular structuring is expected by the system. Files of
text consist simply of a string of characters, with lines
demarcated by the new-line character. Binary programs are
sequences of words as they will appear in core memory
when the program starts executing. A few user programs
manipulate files with more structure: the assembler gener-
ates and the loader expects an object file in a particular for-
mat. However, the structure of files is controlled by the
programs which use them, not by the system.

3.2 Directories
Directories provide the mapping between the names of

files and the files themselves, and thus induce a structure on
the file system as a whole. Each user has a directory of his

own files; he may also create subdirectories to contain
groups of files conveniently treated together. A directory
behaves exactly like an ordinary file except that it cannot be
written on by unprivileged programs, so that the system
controls the contents of directories. However, anyone with
appropriate permission may read a directory just like any
other file.

The system maintains several directories for its own
use. One of these is the root directory. All files in the sys-
tem can be found by tracing a path through a chain of direc-
tories until the desired file is reached. The starting point for
such searches is often the root. Another system directory
contains all the programs provided for general use; that is,
all the commands. As will be seen however, it is by no
means necessary that a program reside in this directory for
it to be executed.

Files are named by sequences of 14 or fewer charac-
ters. When the name of a file is specified to the system, it
may be in the form of a path name, which is a sequence of
directory names separated by slashes “/” and ending in a
file name. If the sequence begins with a slash, the search
begins in the root directory. The name /alpha/beta/gamma
causes the system to search the root for directory alpha,
then to search alpha for beta, finally to find gamma in beta.
Gamma may be an ordinary file, a directory, or a special
file. As a limiting case, the name “/” refers to the root itself.

A path name not starting with “/” causes the system to
begin the search in the user’s current directory. Thus, the
name alpha/beta specifies the file named beta in subdirec-
tory alpha of the current directory. The simplest kind of
name, for example alpha, refers to a file which itself is
found in the current directory. As another limiting case, the
null file name refers to the current directory.

The same nondirectory file may appear in several
directories under possibly different names. This feature is
called linking; a directory entry for a file is sometimes
called a link. UNIX differs from other systems in which link-
ing is permitted in that all links to a file have equal status.
That is, a file does not exist within a particular directory;
the directory entry for a file consists merely of its name and
a pointer to the information actually describing the file.
Thus a file exists independently of any directory entry,
although in practice a file is made to disappear along with
the last link to it.

Each directory always has at least two entries. The
name in each directory refers to the directory itself. Thus a
program may read the current directory under the name “.”
without knowing its complete path name. The name “..” by
convention refers to the parent of the directory in which it
appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form
of a rooted tree. Except for the special entries “.” and “..”,
each directory must appear as an entry in exactly one other,
which is its parent. The reason for this is to simplify the
writing of programs which visit subtrees of the directory

367 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

structure, and more important, to avoid the separation of
portions of the hierarchy. If arbitrary links to directories
were permitted, it would be quite difficult to detect when
the last connection from the root to a directory was severed.

3.3 Special Files
Special files constitute the most unusual feature of the

UNIX file system. Each I/O device supported by UNIX is
associated with at least one such file. Special files are read
and written just like ordinary disk files, but requests to read
or write result in activation of the associated device. An
entry for each special file resides in directory /dev, although
a link may be made to one of these files just like an ordi-
nary file. Thus, for example, to punch paper tape, one may
write on the file /dev/ppt. Special files exist for each com-
munication line, each disk, each tape drive, and for physical
core memory. Of course, the active disks and the core spe-
cial file are protected from indiscriminate access.

There is a threefold advantage in treating I/O devices
this way: file and device I/O are as similar as possible; file
and device names have the same syntax and meaning, so
that a program expecting a file name as a parameter can be
passed a device name; finally, special files are subject to the
same protection mechanism as regular files.

3.4 Removable File Systems
Although the root of the file system is always stored on

the same device, it is not necessary that the entire file sys-
tem hierarchy reside on this device. There is a mount sys-
tem request which has two arguments: the name of an
existing ordinary file, and the name of a direct-access spe-
cial file whose associated storage volume (e.g. disk pack)
should have the structure of an independent file system con-
taining its own directory hierarchy. The effect of mount is to
cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the remov-
able volume. In effect, mount replaces a leaf of the hierar-
chy tree (the ordinary file) by a whole new subtree (the
hierarchy stored on the removable volume). After the
mount, there is virtually no distinction between files on the
removable volume and those in the permanent file system.
In our installation, for example, the root directory resides
on the fixed-head disk, and the large disk drive, which con-
tains user’s files, is mounted by the system initialization
program, the four smaller disk drives are available to users
for mounting their own disk packs. A mountable file system
is generated by writing on its corresponding special file. A
utility program is available to create an empty file system,
or one may simply copy an existing file system.

There is only one exception to the rule of identical
treatment of files on different devices: no link may exist
between one file system hierarchy and another. This restric-
tion is enforced so as to avoid the elaborate bookkeeping
which would otherwise be required to assure removal of the
links when the removable volume is finally dismounted. In

particular, in the root directories of all file systems, remov-
able or not, the name “..” refers to the directory itself
instead of to its parent.

3.5 Protection
Although the access control scheme in UNIX is quite

simple, it has some unusual features. Each user of the sys-
tem is assigned a unique user identification number. When
a file is created, it is marked with the user ID of its owner.
Also given for new files is a set of seven protection bits. Six
of these specify independently read, write, and execute per-
mission for the owner of the file and for all other users.

If the seventh bit is on, the system will temporarily
change the user identification of the current user to that of
the creator of the file whenever the file is executed as a pro-
gram. This change in user ID is effective only during the
execution of the program which calls for it. The set-user-ID
feature provides for privileged programs which may use
files inaccessible to other users. For example, a program
may keep an accounting file which should neither be read
nor changed except by the program itself. If the set-user-
identification bit is on for the program, it may access the
file although this access might be forbidden to other pro-
grams invoked by the given program’s user. Since the
actual user ID of the invoker of any program is always
available, set-user-ID programs may take any measures
desired to satisfy themselves as to their invoker’s creden-
tials. This mechanism is used to allow users to execute the
carefully written commands which call privileged system
entries. For example, there is a system entry invocable only
by the “super-user” (below) which creates an empty direc-
tory. As indicated above, directories are expected to have
entries for “.” and “..”. The command which creates a direc-
tory is owned by the super user and has the set-user-ID bit
set. After it checks its invoker’s authorization to create the
specified directory, it creates it and makes the entries for “.”
and “..”.

Since anyone may set the set-user-ID bit on one of his
own files, this mechanism is generally available with- out
administrative intervention. For example, this protection
scheme easily solves the MOO accounting problem posed in
[7].

The system recognizes one particular user ID (that of
the “super-user”) as exempt from the usual constraints on
file access; thus (for example) programs may be written to
dump and reload the file system without unwanted interfer-
ence from the protection system.

3.6 I/O Calls
The system calls to do I/O are designed to eliminate the

differences between the various devices and styles of
access. There is no distinction between “random” and
sequential I/O, nor is any logical record size imposed by the
system. The size of an ordinary file is determined by the

368 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

highest byte written on it; no predetermination of the size of
a file is necessary or possible.

To illustrate the essentials of I/O in UNIX, Some of the
basic calls are summarized below in an anonymous lan-
guage which will indicate the required parameters without
getting into the complexities of machine language program-
ming. Each call to the system may potentially result in an
error return, which for simplicity is not represented in the
calling sequence.

To read or write a file assumed to exist already, it must
be opened by the following call:

filep = open (name, flag)

Name indicates the name of the file. An arbitrary path name
may be given. The flag argument indicates whether the file
is to be read, written, or “updated”, that is read and written
simultaneously.

The returned value filep is called a file descriptor. It is
a small integer used to identify the file in subsequent calls
to read, write, or otherwise manipulate it.

To create a new file or completely rewrite an old one,
there is a create system call which creates the given file if it
does not exist, or truncates it to zero length if it does exist.
Create also opens the new file for writing and, like open,
returns a file descriptor.

There are no user-visible locks in the file system, nor is
there any restriction on the number of users who may have
a file open for reading or writing; although it is possible for
the contents of a file to become scrambled when two users
write on it simultaneously, in practice, difficulties do not
arise. We take the view that locks are neither necessary nor
sufficient, in our environment, to prevent interference
between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases
maintained by independent processes. They are insufficient
because locks in the ordinary sense, whereby one user is
prevented from writing on a file which another user is read-
ing, cannot prevent confusion when, for example, both
users are editing a file with an editor which makes a copy of
the file being edited.

It should be said that the system has sufficient internal
interlocks to maintain the logical consistency of the file sys-
tem when two users engage simultaneously in such incon-
venient activities as writing on the same file, creating files
in the same directory or deleting each other’s open files.

Except as indicated below, reading and writing are
sequential. This means that if a particular byte in the file
was the last byte written (or read), the next I/O call implic-
itly refers to the first following byte. For each open file
there is a pointer, maintained by the system, which indi-
cates the next byte to be read or written. If n bytes are read
or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read(filep, buffer, count)
n = write(filep, buffer, count)

Up to count bytes are transmitted between the file specified
by filep and the byte array specified by buffer. The returned
value n is the number of bytes actually transmitted. In the
write case, n is the same as count except under exceptional
conditions like I/O errors or end of physical medium on spe-
cial files; in a read, however, n may without error be less
than count. If the read pointer is so near the end of the file
that reading count characters would cause reading beyond
the end, only sufficient bytes are transmitted to reach the
end of the file; also, typewriter-like devices never return
more than one line of input. When a read call returns with n
equal to zero, it indicates the end of the file. For disk files
this occurs when the read pointer becomes equal to the cur-
rent size of the file. It is possible to generate an end-of-file
from a typewriter by use of an escape sequence which
depends on the device used.

Bytes written on a file affect only those implied by the
position of the write pointer and the count; no other part of
the file is changed. If the last byte lies beyond the end of the
file, the file is grown as needed.

To do random (direct access) I/O, it is only necessary to
move the read or write pointer to the appropriate location in
the file.

location = seek(filep, base, offset)

The pointer associated with filep is moved to a position off-
set bytes from the beginning of the file, from the current
position of the pointer, or from the end of the file, depend-
ing on base. Offset may be negative. For some devices (e.g.
paper tape and typewriters) seek calls are ignored. The
actual offset from the beginning of the file to which the
pointer was moved is returned in location.

3.6.1 Other I/O Calls. There are several additional sys-
tem entries having to do with I/O and with the file system
which will not be discussed. For example: close a file, get
the status of a file, change the protection mode or the owner
of a file, create a directory, make a link to an existing file,
delete a file.

4. Implementation of the File System

As mentioned in §3.2 above, a directory entry contains
only a name for the associated file and a pointer to the file
itself. This pointer is an integer called the i-number (for
index number) of the file. When the file is accessed, its i-
number is used as an index into a system table (the i-list)
stored in a known part of the device on which the directory
resides. The entry thereby found (the file’s i-node) contains
the description of the file as follows.

1. Its owner.
2. Its protection bits.
3. The physical disk or tape addresses for the file

contents.
4. Its size.

369 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

5. Time of last modification
6. The number of links to the file, that is, the number of

times it appears in a directory.
7. A bit indicating whether the file is a directory.
8. A bit indicating whether the file is a special file.
9. A bit indicating whether the file is “large” or “small.”

The purpose of an open or create system call is to turn the
path name given by the user into an i-number by searching
the explicitly or implicitly named directories. Once a file is
open, its device, i-number, and read/write pointer are stored
in a system table indexed by the file descriptor returned by
the open or create. Thus the file descriptor supplied during
a subsequent call to read or write the file may be easily
related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it
and a directory entry is made which contains the name of
the file and the i-node number. Making a link to an existing
file involves creating a directory entry with the new name,
copying the i-number from the original file entry, and incre-
menting the link-count field of the i-node. Removing
(deleting) a file is done by decrementing the link-count of
the i-node specified by its directory entry and erasing the
directory entry. If the link-count drops to 0, any disk blocks
in the file are freed and the i-node is deallocated.

The space on all fixed or removable disks which con-
tain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit which
depends on the device. There is space in the i-node of each
file for eight device addresses. A small (nonspecial) file fits
into eight or fewer blocks; in this case the addresses of the
blocks themselves are stored. For large (nonspecial) files,
each of the eight device addresses may point to an indirect
block of 256 addresses of blocks constituting the file itself.
These files may be as large as 8⋅256⋅512, or l,048,576 (220)
bytes.

The foregoing discussion applies to ordinary files.
When an I/O request is made to a file whose i-node indi-
cates that it is special, the last seven device address words
are immaterial, and the list is interpreted as a pair of bytes
which constitute an internal device name. These bytes spec-
ify respectively a device type and subdevice number. The
device type indicates which system routine will deal with I/
O on that device; the subdevice number selects, for exam-
ple, a disk drive attached to a particular controller or one of
several similar typewriter interfaces.

In this environment, the implementation of the mount
system call (§3.4) is quite straightforward. Mount maintains
a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and
whose corresponding value is the device name of the indi-
cated special file. This table is searched for each (i-number,
device)-pair which turns up while a path name is being
scanned during an open or create; if a match is found, the i-
number is replaced by 1 (which is the i-number of the root

directory on all file systems), and the device name is
replaced by the table value.

To the user, both reading and writing of files appear to
be synchronous and unbuffered. That is immediately after
return from a read call the data are available, and con-
versely after a write the user’s workspace may be reused. In
fact the system maintains a rather complicated buffering
mechanism which reduces greatly the number of I/O opera-
tions required to access a file. Suppose a write call is made
specifying transmission of a single byte.

UNIX will search its buffers to see whether the affected
disk block currently resides in core memory; if not, it will
be read in from the device. Then the affected byte is
replaced in the buffer, and an entry is made in a list of
blocks to be written. The return from the write call may
then take place, although the actual I/O may not be com-
pleted until a later time. Conversely, if a single byte is read,
the system determines whether the secondary storage block
in which the byte is located is already in one of the system’s
buffers; if so, the byte can be returned immediately. If not,
the block is read into a buffer and the byte picked out.

A program which reads or writes files in units of 512
bytes has an advantage over a program which reads or
writes a single byte at a time, but the gain is not immense; it
comes mainly from the avoidance of system overhead. A
program which is used rarely or which does no great vol-
ume of I/O may quite reasonably read and write in units as
small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In
practice, this method of organizing the file system has
proved quite reliable and easy to deal with. To the system
itself, one of its strengths is the fact that each file has a
short, unambiguous name which is related in a simple way
to the protection, addressing, and other information needed
to access the file. It also permits a quite simple and rapid
algorithm for checking the consistency of a file system, for
example verification that the portions of each device con-
taining useful information and those free to be allocated are
disjoint and together exhaust the space on the device. This
algorithm is independent of the directory hierarchy, since it
need only scan the linearly-organized i-list. At the same
time the notion of the i-list induces certain peculiarities not
found in other file system organizations. For example, there
is the question of who is to be charged for the space a file
occupies, since all directory entries for a file have equal sta-
tus. Charging the owner of a file is unfair, in general, since
one user may create a file, another may link to it, and the
first user may delete the file. The first user is still the owner
of the file, but it should be charged to the second user. The
simplest reasonably fair algorithm seems to be to spread the
charges equally among users who have links to a file. The
current version of UNIX avoids the issue by not charging
any fees at all.

370 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

4.1 Efficiency of the File System
To provide an indication of the overall efficiency of

UNIX and of the file system in particular, timings were made
of the assembly of a 7621-line program. The assembly was
run alone on the machine; the total clock time was 35.9 sec,
for a rate of 212 lines per sec. The time was divided as fol-
lows: 63.5 percent assembler execution time, 16.5 percent
system overhead, 20.0 percent disk wait time. We will not
attempt any interpretation of these figures nor any compari-
son with other systems, but merely note that we are gener-
ally satisfied with the overall performance of the system.

5. Processes and Images

An image is a computer execution environment. It
includes a core image, general register values, status of
open files, current directory, and the like. An image is the
current state of a pseudo computer.

A process is the execution of an image. While the pro-
cessor is executing on behalf of a process, the image must
reside in core; during the execution of other processes it
remains in core unless the appearance of an active, higher-
priority process forces it to be swapped out to the fixed-
head disk.

The user-core part of an image is divided into three
logical segments. The program text segment begins at loca-
tion 0 in the virtual address space. During execution, this
segment is write-protected and a single copy of it is shared
among all processes executing the same program. At the
first 8K byte boundary above the program text segment in
the virtual address space begins a non-shared, writable data
segment, the size of which may be extended by a system
call. Starting at the highest address in the virtual address
space is a stack segment, which automatically grows down-
ward as the hardware’s stack pointer fluctuates.

5.1 Processes
Except while UNIX is bootstrapping itself into opera-

tion, a new process can come into existence only by use of
the fork system call:

processid = fork (label)

When fork is executed by a process, it splits into two inde-
pendently executing processes. The two processes have
independent copies of the original core image, and share
any open files. The new processes differ only in that one is
considered the parent process: in the parent, control returns
directly from the fork, while in the child, control is passed
to location label. The processid returned by the fork call is
the identification of the other process.

Because the return points in the parent and child pro-
cess are not the same, each image existing after a fork may
determine whether it is the parent or child process.

5.2 Pipes
Processes may communicate with related processes

using the same system read and write calls that are used for
file system I/O. The call

filep = pipe()

returns a file descriptor filep and creates an interprocess
channel called a pipe. This channel, like other open flies, is
passed from parent to child process in the image by the fork
call. A read using a pipe file descriptor waits until another
process writes using the file descriptor for the same pipe. At
this point, data are passed between the images of the two
processes. Neither process need know that a pipe, rather
than an ordinary file, is involved.

Although interprocess communication via pipes is a
quite valuable tool (see §6.2), it is not a completely general
mechanism since the pipe must be set up by a common
ancestor of the processes involved.

5.3 Execution of Programs
Another major system primitive is invoked by

execute(file, arg1, arg2, ..., argn)

which requests the system to read in and execute the pro-
gram named by file, passing it string arguments arg1, arg2,
..., argn. Ordinarily, arg1 should be the same string as file,
so that the program may determine the name by which it
was invoked. All the code and data in the process using exe-
cute is replaced from the file, but open files, current direc-
tory, and interprocess relationships are unaltered. Only if
the call fails, for example because file could not be found or
because its execute-permission bit was not set, does a return
take place from the execute primitive; it resembles a “jump”
machine instruction rather than a subroutine call.

5.4 Process Synchronization
Another process control system call

processid = wait()

causes its caller to suspend execution until one of its chil-
dren has completed execution. Then wait returns the pro-
cessid of the terminated process. An error return is taken if
the calling process has no descendants. Certain status from
the child process is also available. Wait may also present
status from a grandchild or more distant ancestor; see §5.5.

5.5 Termination
Lastly,

exit (status)

terminates a process, destroys its image, closes its open
files, and generally obliterates it. When the parent is noti-
fied through the wait primitive, the indicated status is avail-
able to the parent; if the parent has already terminated, the
status is available to the grandparent, and so on. Processes

371 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

may also terminate as a result of various illegal actions or
user-generated signals (§7 below).

6. The Shell

For most users, communication with UNIX is carried on
with the aid of a program called the Shell. The Shell is a
command line interpreter: it reads lines typed by the user
and interprets them as requests to execute other programs.
In simplest form, a command line consists of the command
name followed by arguments to the command, all separated
by spaces:

command arg1 arg2 ⋅ ⋅ ⋅ argn

The Shell splits up the command name and the arguments
into separate strings. Then a file with name command is
sought; command may be a path name including the “/”
character to specify any file in the system. If command is
found, it is brought into core and executed. The arguments
collected by the Shell are accessible to the command. When
the command is finished, the Shell resumes its own execu-
tion, and indicates its readiness to accept another command
by typing a prompt character.

If file command cannot be found, the Shell prefixes the
string /bin/ to command and attempts again to find the file.
Directory /bin contains all the commands intended to be
generally used.

6.1 Standard I/O
The discussion of I/O in §3 above seems to imply that

every file used by a program must be opened or created by
the program in order to get a file descriptor for the file. Pro-
grams executed by the Shell, however, start off with two
open files which have file descriptors 0 and 1. As such a
program begins execution, file 1 is open for writing, and is
best understood as the standard output file. Except under
circumstances indicated below, this file is the user’s type-
writer. Thus programs which wish to write informative or
diagnostic information ordinarily use file descriptor 1. Con-
versely, file 0 starts off open for reading, and programs
which wish to read messages typed by the user usually read
this file.

The Shell is able to change the standard assignments of
these file descriptors from the user’s typewriter printer and
keyboard. If one of the arguments ‘to a command is pre-
fixed by “〉”, file descriptor 1 will, for the duration of the
command, refer to the file named after the “〉”. For exam-
ple,

ls

ordinarily lists, on the typewriter, the names of the files in
the current directory. The command

ls 〉there

creates a file called there and places the listing there. Thus
the argument “〉there” means, “place output on there.” On
the other hand,

ed

ordinarily enters the editor, which takes requests from the
user via his typewriter. The command

ed 〈script

interprets script as a file of editor commands; thus “〈script”
means, “take input from script.”

Although the file name following “〈” or “〉” appears to
be an argument to the command, in fact it is interpreted
completely by the Shell and is not passed to the command
at all. Thus no special coding to handle I/O redirection is
needed within each command; the command need merely
use the standard file descriptors 0 and 1 where appropriate.

6.2 Filters
An extension of the standard I/O notion is used to direct

output from one command to the input of another. A
sequence of commands separated by vertical bars causes
the Shell to execute all the commands simultaneously and
to arrange that the standard output of each command be
delivered to the standard input of the next command in the
sequence. Thus in the command line

ls | pr –2 | opr

ls lists the names of the files in the current directory; its out-
put is passed to pr, which paginates its input with dated
headings. The argument “–2” means double column. Like-
wise the output from pr is input to opr. This command
spools its input onto a file for off-line printing.

This process could have been carried out more clum-
sily by

ls 〉temp1
pr –2 〈temp1 〉temp2
opr 〈temp2

followed by removal of the temporary files. In the absence
of the ability to redirect output and input, a still clumsier
method would have been to require the ls command to
accept user requests to paginate its output, to print in multi-
column format, and to arrange that its output be delivered
off-line. Actually it would be surprising, and in fact unwise
for efficiency reasons, to expect authors of commands such
as ls to provide such a wide variety of output options.

A program such as pr which copies its standard input
to its standard output (with processing) is called a filter.
Some filters which we have found useful perform character
transliteration, sorting of the input, and encryption and
decryption.

372 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

6.3 Command Separators: Multitasking
Another feature provided by the Shell is relatively

straightforward. Commands need not be on different lines;
instead they may be separated by semicolons.

ls; ed

will first list the contents of the current directory, then enter
the editor.

A related feature is more interesting. If a command is
followed by “&”, the Shell will not wait for the command
to finish before prompting again; instead, it is ready imme-
diately to accept a new command. For example,

as source 〉output &

causes source to be assembled, with diagnostic output
going to output; no matter how long the assembly takes, the
Shell returns immediately. When the Shell does not wait for
the completion of a command, the identification of the pro-
cess running that command is printed. This identification
may be used to wait for the completion of the command or
to terminate it. The “&” may be used several times in a line:

as source 〉output & ls 〉files &

does both the assembly and the listing in the background. In
the examples above using “&”, an output file other than the
typewriter was provided; if this had not been done, the out-
puts of the various commands would have been intermin-
gled.

The Shell also allows parentheses in the above opera-
tions. For example,

(date; ls) 〉x &

prints the current date and time followed by a list of the cur-
rent directory onto the file x. The Shell also returns immedi-
ately for another request.

6.4 The Shell as a Command: Command files
The Shell is itself a command, and may be called recur-

sively. Suppose file tryout contains the lines

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed
testprog. a.out is the (binary) output of the assembler, ready
to be executed. Thus if the three lines above were typed on
the console, source would be assembled, the resulting pro-
gram named testprog, and testprog executed. When the
lines are in tryout, the command

sh 〈tryout

would cause the Shell sh to execute the commands sequen-
tially.

The Shell has further capabilities, including the ability
to substitute parameters and to construct argument lists
from a specified subset of the file names in a directory. It is

also possible to execute commands conditionally on charac-
ter string comparisons or on existence of given files and to
perform transfers of control within filed command
sequences.

6.5 Implementation of the Shell
The outline of the operation of the Shell can now be

understood. Most of tile time, the Shell is waiting for the
user to type a command. When the new-line character end-
ing the line is typed, the Shell’s read call returns. The Shell
analyzes the command line, putting the arguments in a form
appropriate for execute. Then fork is called. The child pro-
cess, whose code of course is still that of the Shell, attempts
to perform an execute with the appropriate arguments. If
successful, this will bring in and start execution of the pro-
gram whose name was given. Meanwhile, the other process
resulting from the fork, which is the parent process, waits
for the child process to die. When this happens, the Shell
knows the command is finished, so it types its prompt and
reads the typewriter to obtain another command.

Given this framework, the implementation of back-
ground processes is trivial; whenever a command line con-
tains “&”, the Shell merely refrains from waiting for the
process which it created to execute the command.

Happily, all of this mechanism meshes very nicely with
the notion of standard input and output files. When a pro-
cess is created by the fork primitive, it inherits not only the
core image of its parent but also all the files currently open
in its parent, including those with file descriptors 0 and 1.
The Shell, of course, uses these files to read command lines
and to write its prompts and diagnostics, and in the ordinary
case its children—the command programs—inherit them
automatically. When an argument with “〈” or “〉” is given
however, the offspring process, just before it performs exe-
cute, makes the standard I/O file descriptor 0 or 1 respec-
tively refer to the named file. This is easy because, by
agreement, the smallest unused file descriptor is assigned
when a new file is opened (or created); it is only necessary
to close file 0 (or 1) and open the named file. Because the
process in which the command program runs simply termi-
nates when it is through, the association between a file
specified after “〈” or “〉” and file descriptor 0 or 1 is ended
automatically when the process dies. Therefore the Shell
need not know the actual names of the files which are its
own standard input and output since it need never reopen
them.

Filters are straightforward extensions of standard I/O
redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the Shell
never terminates. (The main loop includes that branch of
the return from fork belonging to the parent process; that is,
the branch which does a wait, then reads another command
line.) The one thing which causes the Shell to terminate is
discovering an end-of-file condition on its input file. Thus,

373 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

when the Shell is executed as a command with a given input
file, as in

sh 〈comfile

the commands in comfile will be executed until the end of
comfile is reached; then the instance of the Shell invoked by
sh will terminate. Since this Shell process is the child of
another instance of the Shell, the wait executed in the latter
will return, and another command may be processed.

6.6 Initialization
The instances of the Shell to which users type com-

mands are themselves children of another process. The last
step in the initialization of UNIX is the creation of a single
process and the invocation (via execute) of a program called
init. The role of init is to create one process for each type-
writer channel which may be dialed up by a user. The vari-
ous subinstances of init open the appropriate typewriters for
input and output. Since when init was invoked there were
no files open, in each process the typewriter keyboard will
receive file descriptor 0 and the printer file descriptor 1.
Each process types out a message requesting that the user
log in and waits, reading the typewriter, for a reply. At the
outset, no one is logged in, so each process simply hangs.
Finally someone types his name or other identification. The
appropriate instance of init wakes up, receives the log-in
line, and reads a password file. If the user name is found,
and if he is able to supply the correct password, init changes
to the user’s default current directory, sets the process’s user
ID to that of the person logging in, and performs an execute
of the Shell. At this point the Shell is ready to receive com-
mands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of
all the subinstances of itself which will later become Shells)
does a wait. If one of the child processes terminates, either
because a Shell found an end of file or because a user typed
an incorrect name or password, this path of init simply rec-
reates the defunct process, which in turn reopens the appro-
priate input and output files and types another login
message. Thus a user may log out simply by typing the end-
of-file sequence in place of a command to the Shell.

6.7 Other Programs as Shell
The Shell as described above is designed to allow users

full access to the facilities of the system since it will invoke
the execution of any program with appropriate protection
mode. Sometimes, however, a different interface to the sys-
tem is desirable, and this feature is easily arranged.

Recall that after a user has successfully logged in by
supplying his name and password, init ordinarily invokes
the Shell to interpret command lines. The user’s entry in tile
password file may contain the name of a program to be
invoked after login instead of the Shell. This program is
free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a
secretarial editing system specify that the editor ed is to be

used instead of the Shell. Thus when editing system users
log in, they are inside the editor and can begin work imme-
diately; also, they can be prevented from invoking UNIX
programs not intended for their use. In practice, it has
proved desirable to allow a temporary escape from the edi-
tor to execute the formatting program and other utilities.

Several of the games (e.g. chess, blackjack, 3D tic-tac-
toe) available on UNIX illustrate a much more severely
restricted environment. For each of these an entry exists in
the password file specifying that the appropriate game-
playing program is to be invoked instead of the Shell. Peo-
ple who log in as a player of one of the games find them-
selves limited to the game and unable to investigate the
presumably more interesting offerings of UNIX as a whole.

7. Traps

The PDP-11 hardware detects a number of program
faults, such as references to nonexistent memory, unimple-
mented instructions, and odd addresses used where an even
address is required. Such faults cause the processor to trap
to a system routine. When an illegal action is caught, unless
other arrangements have been made, the system terminates
the process and writes the user’s image on file core in the
current directory. A debugger can be used to determine the
state of the program at the time of the fault.

Programs which are looping, which produce unwanted
output, or about which the user has second thoughts may be
halted by the use of the interrupt signal, which is generated
by typing the “delete” character. Unless special action has
been taken, this signal simply causes the program to cease
execution without producing a core image file.

There is also a quit signal which is used to force a core
image to be produced. Thus programs which loop unex-
pectedly may be halted and the core image examined with-
out prearrangement.

The hardware-generated faults and the interrupt and
quit signals can, by request, be either ignored or caught by
the process. For example, the Shell ignores quits to prevent
a quit from logging the user out. The editor catches inter-
rupts and returns to its command level. This is useful for
stopping long printouts without losing work in progress (the
editor manipulates a copy of the file it is editing). In sys-
tems without floating point hardware, unimplemented
instructions are caught, and floating point instructions are
interpreted.

8. Perspective

Perhaps paradoxically, the success of UNIX is largely
due to the fact that it was not designed to meet any pre-
defined objectives. The first version was written when one
of us (Thompson), dissatisfied with the available computer

374 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

facilities, discovered a little-used system PDP-7 and set out
to create a more hospitable environment. This essentially
personal effort was sufficiently successful to gain the inter-
est of the remaining author and others, and later to justify
the acquisition of the PDP-11/20, specifically to support a
text editing and formatting system. Then in turn the 11/20
was outgrown, UNIX had proved useful enough to persuade
management to invest in the PDP-11/45. Our goals through-
out the effort, when articulated at all, have always con-
cerned themselves with building a comfortable relationship
with the machine and with exploring ideas and inventions
in operating systems. We have not been faced with the need
to satisfy someone else’s requirements, and for this freedom
we are grateful.

Three considerations which influenced the design of
UNIX are visible in retrospect.

First, since we are programmers, we naturally designed
the system to make it easy to write, test, and run programs.
The most important expression of our desire for program-
ming convenience was that the system was arranged for
interactive use, even though the original version only sup-
ported one user. We believe that a properly designed inter-
active system is much more productive and satisfying to use
than a “batch” system. Moreover such a system is rather
easily adaptable to noninteractive use, while the converse is
not true.

Second there have always been fairly severe size con-
straints on the system and its software. Given the partiality
antagonistic desires for reasonable efficiency and expres-
sive power, the size constraint has encouraged not only
economy but a certain elegance of design. This may be a
thinly disguised version of the “salvation through suffer-
ing” philosophy, but in our case it worked.

Third, nearly from the start, the system was able to, and
did, maintain itself. This fact is more important than it
might seem. If designers of a system are forced to use that
system, they quickly become aware of its functional and
superficial deficiencies and are strongly motivated to cor-
rect them before it is too late. Since all source programs
were always available and easily modified on-line, we were
willing to revise and rewrite the system and its software
when new ideas were invented, discovered, or suggested by
others.

The aspects of UNIX discussed in this paper exhibit
clearly at least the first two of these design considerations.
The interface to the file system, for example, is extremely
convenient from a programming standpoint. The lowest
possible interface level is designed to eliminate distinctions
between the various devices and files and between direct
and sequential access. No large ‘‘access method” routines
are required to insulate the programmer from the system
calls; in fact, all user programs either call the system
directly or use a small library program, only tens of instruc-
tions long, which buffers a number of characters and reads
or writes them all at once.

Another important aspect of programming conve-
nience is that there are no “control blocks” with a compli-
cated structure partially maintained by and depended on by
the file system or other system calls. Generally speaking,
the contents of a program’s address space are the property
of the program, and we have tried to avoid placing restric-
tions on the data structures within that address space.

Given the requirement that all programs should be
usable with any file or device as input or output, it is also
desirable from a space-efficiency standpoint to push
device-dependent considerations into the operating system
itself. The only alternatives seem to be to load routines for
dealing with each device with all programs, which is expen-
sive in space, or to depend on some means of dynamically
linking to the routine appropriate to each device when it is
actually needed, which is expensive either in overhead or in
hardware.

Likewise, the process control scheme and command
interface have proved both convenient and efficient. Since
the Shell operates as an ordinary, swappable user program,
it consumes no wired-down space in the system proper, and
it may be made as powerful as desired at little cost, In par-
ticular, given the framework in which the Shell executes as
a process which spawns other processes to perform com-
mands, the notions of I/O redirection, background pro-
cesses, command files, and user-selectable system
interfaces all become essentially trivial to implement.

8.1 Influences
The success of UNIX lies not so much in new inventions

but rather in the full exploitation of a carefully selected set
of fertile ideas, and especially in showing that they can be
keys to the implementation of a small yet powerful operat-
ing system.

The fork operation, essentially as we implemented it,
was present in the Berkeley time-sharing system [8]. On a
number of points we were influenced by Multics, which
suggested the particular form of the I/O system calls [9] and
both the name of the Shell and its general functions, The
notion that the Shell should create a process for each com-
mand was also suggested to us by the early design of Mul-
tics, although in that system it was later dropped for
efficiency reasons. A similar scheme is used by TENEX [10].

9. Statistics

The following statistics from UNIX are presented to
show the scale of the system and to show how a system of
this scale is used. Those of our users not involved in docu-
ment preparation tend to use the system for program devel-
opment, especially language work. There are few important
“applications” programs.

375 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

9.1 Overall

72 user population
14 maximum simultaneous users
300 directories
4400 files
34000 512-byte secondary storage blocks used

9.2 Per day (24-hour day, 7-day week basis)
There is a “background” process that runs at the lowest

possible priority; it is used to soak up any idle CPU time. It
has been used to produce a million-digit approximation to
the constant e – 2, and is now generating composite
pseudoprimes (base 2).

1800 commands
4.3 CPU hours (aside from background)
70 connect hours
30 different users
75 logins

9.3 Command CPU Usage (cut off at 1%)

15.7% C compiler 1.7% Fortran compiler
15.2% users’ programs 1.6% remove file
11.7% editor 1.6% tape archive
5.8% Shell (used as a com- 1.6% file system consistency

mand, including com- check
mand times) 1.4% library maintainer

5.3% chess 1.3% concatenate/print files
3.3% list directory 1.3% paginate and print file
3.1% document formatter 1.1% print disk usage
1.6% backup dumper 1.0% copy file
1.8% assembler

9.4 Command Accesses (cut off at 1%)

15.3% editor 1.6% debugger
9.6% list directory 1.6% Shell (used as a command)
6.3% remove file 1.5% print disk availability
6.3% C compiler 1.4% list processes executing
6.0% concatenate/print file 1.4% assembler
6.0% users’ programs 1.4% print arguments
3.3% list people logged on 1.2% copy file

system 1.1% paginate and print file
3.2% rename/move file 1.1% print current date/time
3.1% file status 1.1% file system consistency
1.8% library maintainer check
1.8% document formatter 1.0% tape archive
1.6% execute another com-

mand conditionally

9.5 Reliability
Our statistics on reliability are much more subjective

than the others. The following results are true to the best of
our combined recollections. The time span is over one year
with a very early vintage 11/45.

There has been one loss of a file system (one disk out
of five) caused by software inability to cope with a hard
ware problem causing repeated power fail traps. Files on
that disk were backed up three days.

A “crash” is an unscheduled system reboot or halt.
There is about one crash every other day; about two-thirds

of them are caused by hardware-related difficulties such as
power dips and inexplicable processor interrupts to random
locations. The remainder are software failures. The longest
uninterrupted up time was about two weeks. Service calls
average one every three weeks, but are heavily clustered.
Total up time has been about 98 percent of our 24-hour,
365-day schedule.

Acknowledgments. We are grateful to R.H. Canaday,
L.L. Cherry, and L.E. McMahon for their contributions to
UNIX. We are particularly appreciative of the inventiveness,
thoughtful criticism, and constant support of R. Morris,
M.D. McIlroy, and J.F. Ossanna.

References
1. Digital Equipment Corporation. PDP-11/40 Processor
Handbook, 1972, and PDP-11/45 Processor Handbook. 1971.
2. Deutsch, L.P., and Lampson, B.W. An online editor. Comm.
ACM 10, 12 (Dec, 1967) 793–799, 803.
3. Richards, M. BCPL: A tool for compiler writing and system
programming. Proc. AFIPS 1969 SJCC, Vol. 34, AFIPS Press,
Montvale, N.J., pp. 557–566.
4. McClure, R.M. TMG—A syntax directed compiler. Proc.
ACM 20th Nat. Conf., ACM, 1965, New York, pp. 262–274.
5. Hall. A.D. The M6 macroprocessor. Computing Science
Tech. Rep. #2, Bell Telephone Laboratories, 1969.
6. Ritchie, D.M. C reference manual. Unpublished
memorandum, Bell Telephone Laboratories, 1973.
7. Aleph-null. Computer Recreations. Software Practice and
Experience 1, 2 (Apr.–June 1971), 201–204.
8. Deutsch, L.P., and Lampson, B.W. SDS 930 time-sharing
system preliminary reference manual. Doc. 30.10.10, Project
GENIE, U of California at Berkeley, Apr. 1965.
9. Feiertag. R.J., and Organick, E.I. The Multics input-output
system. Proc. Third Symp. on Oper. Syst. Princ., Oct. 18–20,
1971, ACM, New York, pp. 35–41.
10. Bobrow, D.C., Burchfiel, J.D., Murphy, D.L., and
Tomlinson, R.S. TENEX, a paged time sharing system for the
PDP-10. Comm. ACM 15, 3 (Mar. 1972) 135–143.

