12/5/2018

ORACLE’

Chapter 10. Arrays

Java SE > Java SE Specifications > Java Language Specification

Prev

Table of Contents

Chapter 10. Arrays

10.1. Array Types Chapter 10. Arrays

10.2. Array Variables

10.3. Array Creation

10.4. Array Access

10.5. Array Store Exception

10.6. Array Initializers

10.7. Array Members

10.8. class Objects for Arrays

10.9. An Array_of Characters is Not a String

In the Java programming language, arrays are objects (§4.3.1), are dynamically
created, and may be assigned to variables of type Object (§4.3.2). All
methods of class Object may be invoked on an array.

An array object contains a number of variables. The number of variables may
be zero, in which case the array is said to be empty. The variables contained in
an array have no names; instead they are referenced by array access
expressions that use non-negative integer index values. These variables are
called the components of the array. If an array has n components, we say n is
the length of the array; the components of the array are referenced using
integer indices from 0 to n - 1, inclusive.

All the components of an array have the same type, called the component type
of the array. If the component type of an array is T, then the type of the array
itself is written T[].

The value of an array component of type float is always an element of the
float value set (§4.2.3); similarly, the value of an array component of type
double is always an element of the double value set. It is not permitted for the
value of an array component of type float to be an element of the float-
extended-exponent value set that is not also an element of the float value set,
nor for the value of an array component of type double to be an element of the
double-extended-exponent value set that is not also an element of the double
value set.

The component type of an array may itself be an array type. The components of
such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type)
the component type of that type, and so on, eventually one must reach a
component type that is not an array type; this is called the element type of the
original array, and the components at this level of the data structure are called
the elements of the original array.

There are some situations in which an element of an array can be an array: if
the element type is Object or Cloneable or java.io.Serializable, then
some or all of the elements may be arrays, because any array object can be
assigned to any variable of these types.

10.1. Array Types

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html

Array types are used in declarations and in cast expressions (§15.16).

An array type is written as the name of an element type followed by some
number of empty pairs of square brackets []. The number of bracket pairs
indicates the depth of array nesting.

An array's length is not part of its type.

The element type of an array may be any type, whether primitive or reference.
In particular:

e Arrays with an interface type as the element type are allowed.

An element of such an array may have as its value a null reference or an
instance of any type that implements the interface.

1/9

12/5/2018 Chapter 10. Arrays

o Arrays with an abstract class type as the element type are allowed.

An element of such an array may have as its value a null reference or an
instance of any subclass of the abstract class that is not itself abstract.

The supertypes of an array type are specified in §4.10.3.
The direct superclass of an array type is Object.

Every array type implements the interfaces Cloneable and
java.io.Serializable

10.2. Array Variables

A variable of array type holds a reference to an object. Declaring a variable of
array type does not create an array object or allocate any space for array
components. It creates only the variable itself, which can contain a reference to
an array.

However, the initializer part of a declarator (§8.3, §9.3, §14.4.1) may create an
array, a reference to which then becomes the initial value of the variable.

Example 10.2-1. Declarations of Array Variables

int[] aij; // array of int
short[][] as; // array of array of short
short s, // scalar short

aas[1[1; // array of array of short
Object[] ao, // array of Object

otherAo; // array of Object
Collection<?>[] ca; // array of Collection ¢ff unknown type

The declarations above do not create array objects. The following are
examples of declarations of array variables that do create array objects:

Exception ae[] = new Exception[3];
Object aao[][] new Exception[2][3];
int[] factorial {1, 1, 2, 6, 24, 120, 720f |5040 };

char ac[] { |n|, 'o'r ‘t', ' .I 'a|, ' |,

s', 't'y 'r', 'i', 'n',|'lg" }:
;

String[] aas "array", "of", "String",|}

1]
-~

The [] may appear as part of the type at the beginning of the declaration, or as
part of the declarator for a particular variable, or both.

For example:

byte[] rowvector, colvector, matrix[];

This declaration is equivalent to:

byte rowvector[], colvector[], matrix[][];

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 2/9

12/5/2018 Chapter 10. Arrays

In a variable declaration (§8.3, §8.4.1, §9.3, §14.14, §14.20) except for a
variable arity parameter, the array type of a variable is denoted by the array
type that appears at the beginning of the declaration, followed by any bracket
pairs that follow the variable's Identifier in the declarator.

For example, the local variable declaration:

int a, b1, c[1[1;

is equivalent to the series of declarations:

int a;
int[] b;
int[][] c;

Brackets are allowed in declarators as a nod to the tradition of C and
C++. The general rules for variable declaration, however, permit brackets
to appear on both the type and in declarators, so that the local variable
declaration:

float[1[] £[101, g[1[1[], h{1; // Yechh!

is equivalent to the series of declarations:

float[J[1[1[] £;

float[1[1[1[1[] 9;
float[]1[]1[] h;

We do not recommend "mixed notation" in an array variable declaration, where
brackets appear on both the type and in declarators.

Once an array object is created, its length never changes. To make an array
variable refer to an array of different length, a reference to a different array must
be assigned to the variable.

A single variable of array type may contain references to arrays of different
lengths, because an array's length is not part of its type.

If an array variable v has type A[1, where A is a reference type, then v can
hold a reference to an instance of any array type B[1, provided B can be
assigned to A (§5.2). This may result in a run-time exception on a /later
assignment; see §10.5 for a discussion.

10.3. Array Creation

An array is created by an array creation expression (§15.10) or an array
initializer (§10.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of
nesting. The array's length is available as a £inal instance variable 1length.

An array initializer creates an array and provides initial values for all its
components.

10.4. Array Access

A component of an array is accessed by an array access expression (§15.13)
that consists of an expression whose value is an array reference followed by an
indexing expression enclosed by [and], asinA[1i].

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 3/9

12/5/2018

Chapter 10. Arrays

All arrays are 0-origin. An array with length n can be indexed by the integers 0
to n-1.

Example 10.4-1. Array Access

class Gauss {
public static void main(String[] args) {
int[] ia = new int[101];
for (int i = 0; i < ia.length; i++) Lid[i] = i;
int sum = 0;
for (int e : ia) sum += e;
System.out.println(sum);

This program produces the output:

5050

The program declares a variable ia that has type array of int, thatis,
int[]. The variable ia is initialized to reference a newly created array
object, created by an array creation expression (§15.10). The array
creation expression specifies that the array should have 101
components. The length of the array is available using the field 1ength,
as shown. The program fills the array with the integers from 0 to 100,
sums these integers, and prints the result.

Arrays must be indexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric
promotion (§5.6.1) and become int values.

An attempt to access an array component with a 1ong index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that is
less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown.

10.5. Array Store Exception

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html

For an array whose type is A[1, where A is a reference type, an assignment to
a component of the array is checked at run time to ensure that the value being
assigned is assignable to the component.

If the type of the value being assigned is not assignment-compatible (§5.2)
with the component type, an ArrayStoreException is thrown.

If the component type of an array were not reifiable (§4.7), the Java Virtual Machine could not
perform the store check described in the preceding paragraph. This is why an array creation
expression with a non-reifiable element type is forbidden (§15.10). One may declare a
variable of an array type whose element type is non-reifiable, but assignment of the result of
an array creation expression to the variable will necessarily cause an unchecked warning
(§5.1.9).

Example 10.5-1. ArrayStoreException

class Point { int x, y; }
class ColoredPoint extends Point { int colory} |}
class Test {
public static void main(String[] args) {
ColoredPoint[] cpa = new ColoredPoint[|10];

4/9

12/5/2018 Chapter 10. Arrays

Point[] pa = cpa;
System.out.println(pa[l] == null);
try {
pa[0] = new Point();
} catch (ArrayStoreException e) {
System.out.println(e);

This program produces the output:

true
java.lang.ArrayStoreException: Point

The variable pa has type Point[] and the variable cpa has as its value
a reference to an object of type ColoredPoint[]. A ColoredPoint
can be assigned to a Point; therefore, the value of cpa can be assigned
to pa.

A reference to this array pa, for example, testing whether pa[1] is
null, will not result in a run-time type error. This is because the element
of the array of type ColoredPoint[] isa ColoredPoint, and every
ColoredPoint can stand in for a Point, since Point is the superclass
of ColoredPoint.

On the other hand, an assignment to the array pa can result in a run-time
error. At compile time, an assignment to an element of pa is checked to
make sure that the value assigned is a Point. But since pa holds a
reference to an array of ColoredPoint, the assignment is valid only if
the type of the value assigned at run time is, more specifically, a

ColoredPoint.

The Java Virtual Machine checks for such a situation at run time to
ensure that the assignment is valid; if not, an ArrayStoreException
is thrown.

10.6. Array Initializers

An array initializer may be specified in a declaration (§8.3, §9.3, §14.4), or as
part of an array creation expression (§15.10), to create an array and provide
some initial values.

ArrayInitializer:
{ VariableInitializersqgpe sopt }

VariableInitializers:
VariableInitializer
VariableInitializers , VariableInitializer

The following is repeated from §8.3 to make the presentation here clearer:

VariableInitializer:
Expression
ArrayInitializer

An array initializer is written as a comma-separated list of expressions,
enclosed by braces { and }.

A trailing comma may appear after the last expression in an array initializer and
is ignored.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 5/9

12/5/2018

Chapter 10. Arrays

Each variable initializer must be assignment-compatible (§5.2) with the
array's component type, or a compile-time error occurs.

It is a compile-time error if the component type of the array being
initialized is not reifiable (§4.7).

The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
allocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
outOfMemoryError. Otherwise, a one-dimensional array is created of the
specified length, and each component of the array is initialized to its default
value (§4.12.5).

The variable initializers immediately enclosed by the braces of the array
initializer are then executed from left to right in the textual order they occur in
the source code. The n'th variable initializer specifies the value of the n-1'th
array component. If execution of a variable initializer completes abruptly, then
execution of the array initializer completes abruptly for the same reason. If all
the variable initializer expressions complete normally, the array initializer
completes normally, with the value of the newly initialized array.

If the component type is an array type, then the variable initializer specifying a
component may itself be an array initializer; that is, array initializers may be
nested. In this case, execution of the nested array initializer constructs and
initializes an array object by recursive application of the algorithm above, and
assigns it to the component.

Example 10.6-1. Array Initializers

class Test {
public static void main(String[] args) {
int ia[][] = { {1, 2}, null };
for (int[] ea : ia) {
for (int e: ea) {
System.out.println(e);

This program produces the output:

before causing a NullPointerException in trying to index the second
component of the array ia, which is a null reference.

10.7. Array Members

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html

The members of an array type are all of the following:

e The public final field length, which contains the number of
components of the array. 1length may be positive or zero.

e The public method clone, which overrides the method of the same name
in class Object and throws no checked exceptions. The return type of the
clone method of an array type T[1is T[].

A clone of a multidimensional array is shallow, which is to say that it creates
only a single new array. Subarrays are shared.

6/9

12/5/2018 Chapter 10. Arrays

¢ All the members inherited from class Object; the only method of Object
that is not inherited is its c1lone method.

An array thus has the same public fields and methods as the following
class:

class A<T> implements Cloneable, java.io.Serjiglizable {
public final int length = X ;
public T[] clone() {
try {
return (T[])super.clone(); // un¢hecked warning
} catch (CloneNotSupportedException ¢)| {
throw new InternalError(e.getMessgge());

Note that the cast in the example above would generate an unchecked
warning (§5.1.9) if arrays were really implemented this way.

See §9.6.3.4 for another situation where the difference between public and non-public

methods of Object requires special care.

Example 10.7-1. Arrays Are Cloneable

class Testl {
public static void main(String[] args) {
int ial[] = { 1, 2 };
int ia2[] = ial.clone();
System.out.print((ial == ia2) + " ")
ial[l]++;
System.out.println(ia2[1]);

This program produces the output:

false 2

showing that the components of the arrays referenced by ial and ia2
are different variables.

Example 10.7-2. Shared Subarrays After A Clone

The fact that subarrays are shared when a multidimensional array is
cloned is shown by this program:

class Test2 {
public static void main(String[] args) thyows Throwable {
int ia[][] = { {1,2}, null };

int ja[][] = ia.clone();
System.out.print((ia == ja) + " ");
System.out.println(ia[0] == ja[0] &&|ia[l] == ja[l]);

This program produces the output:

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 7/9

12/5/2018 Chapter 10. Arrays

false true

showing that the int[] array thatis ia[0] and the int[] array that is
ja[0] are the same array.

10.8. class Objects for Arrays

Every array has an associated Class object, shared with all other arrays with
the same component type.

Example 10.8-1. class Object Of Array

class Test {
public static void main(String[] args) {
int[] ia = new int[3];
System.out.println(ia.getClass());
System.out.println(ia.getClass().get8uperclass());

This program produces the output:

class [I
class java.lang.Object

where the string "[1" is the run-time type signature for the class object
"array with component type int".

Example 10.8-2. Array Class Objects Are Shared

class Test {
public static void main(String[] args) {
int[] ia = new int[3];
int[] ib = new int[6];
System.out.println(ia.getClass() == Lj.getClass());
System.out.println("ia has length=" ¢ [ia.length);

This program produces the output:

true
ia has length=3

The program uses the method getClass inherited from class Object,
and the field 1length. The result of the comparison of the Class objects
in the first print1n demonstrates that all arrays whose components are
of type int are instances of the same array type, which is int[].

10.9. An Array of Characters is Not a String

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 8/9

12/5/2018 Chapter 10. Arrays
In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char is terminated by '\u0000' (the NUL
character).

A string object is immutable, that is, its contents never change, while an array
of char has mutable elements.

The method toCharArray in class String returns an array of characters containing the
same character sequence as a String. The class StringBuffer implements useful
methods on mutable arrays of characters.

Prev Next
Chapter 9. Interfaces Home Chapter 11. Exceptions
Legal Notice

https://docs.oracle.com/javase/specs/jls/se7/html/jls-10.html 9/9

