
ptg16518469

java.math.BigDecimal 1.1

• BigDecimal add(BigDecimal other)
• BigDecimal subtract(BigDecimal other)
• BigDecimal multiply(BigDecimal other)
• BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

returns the sum, difference, product, or quotient of this big decimal and other. To
compute the quotient, you must supply a rounding mode.The mode RoundingMode.HALF_UP
is the rounding mode that you learned in school: round down the digits 0 to 4,
round up the digits 5 to 9. It is appropriate for routine calculations. See the API
documentation for other rounding modes.

• int compareTo(BigDecimal other)

returns 0 if this big decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

• static BigDecimal valueOf(long x)
• static BigDecimal valueOf(long x, int scale)

returns a big decimal whose value equals x or x / 10scale.

3.10 Arrays
An array is a data structure that stores a collection of values of the same type.
You access each individual value through an integer index. For example, if a is
an array of integers, then a[i] is the ith integer in the array.

Declare an array variable by specifying the array type—which is the element type
followed by []—and the array variable name. For example, here is the declaration
of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a
with an actual array. Use the new operator to create the array.

int[] a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of length n.

1113.10 Arrays

ptg16518469

NOTE: You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly separates the
type int[] (integer array) from the variable name.

The array elements are numbered from 0 to 99 (and not 1 to 100). Once the array is
created, you can fill the elements in an array, for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
 a[i] = i; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero. Arrays
of boolean are initialized with false. Arrays of objects are initialized with the special
value null, which indicates that they do not (yet) hold any objects. This can be
surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to hold
empty strings, you must supply them:

for (int i = 0; i < 10; i++) names[i] = "";

CAUTION: If you construct an array with 100 elements and then try to access
the element a[100] (or any other index outside the range from 0 to 99), your
program will terminate with an “array index out of bounds” exception.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

Once you create an array, you cannot change its size (although you can, of course,
change an individual array element). If you frequently need to expand the size
of an array while your program is running, you should use a different data
structure called an array list. (See Chapter 5 for more on array lists.)

Chapter 3 Fundamental Programming Structures in Java112

ptg16518469

3.10.1 The “for each” Loop
Java has a powerful looping construct that allows you to loop through each ele-
ment in an array (or any other collection of elements) without having to fuss with
index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes the
statement (which, of course, may be a block). The collection expression must be an
array or an object of a class that implements the Iterable interface, such as ArrayList.
We discuss array lists in Chapter 5 and the Iterable interface in Chapter 9.

For example,

for (int element : a)
 System.out.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the Java
language considered using keywords, such as foreach and in. But this loop was a
late addition to the Java language, and in the end nobody wanted to break the
old code that already contained methods or variables with these names (such as
System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

However, the “for each” loop is more concise and less error-prone, as you don’t
have to worry about those pesky start and end index values.

NOTE: The loop variable of the “for each” loop traverses the elements of the
array, not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if you
need to process all elements in a collection. However, there are still plenty of
opportunities to use the traditional for loop. For example, you might not want to
traverse the entire collection, or you may need the index value inside the loop.

1133.10 Arrays

ptg16518469

TIP: There is an even easier way to print all values of an array, using the toString
method of the Arrays class. The call Arrays.toString(a) returns a string containing
the array elements, enclosed in brackets and separated by commas, such as
"[2, 3, 5, 7, 11, 13]". To print the array, simply call

System.out.println(Arrays.toString(a));

3.10.2 Array Initializers and Anonymous Arrays
Java has a shortcut for creating an array object and supplying initial values at the
same time. Here’s an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not call new when you use this syntax.

You can even initialize an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces.
It counts the number of initial values and sets the array size accordingly. You can
use this syntax to reinitialize an array without creating a new variable. For
example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE: It is legal to have arrays of length 0. Such an array can be useful if you
write a method that computes an array result and the result happens to be
empty. Construct an array of length 0 as

new elementType[0]

Note that an array of length 0 is not the same as null.

3.10.3 Array Copying
You can copy one array variable into another, but then both variables refer to the
same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Chapter 3 Fundamental Programming Structures in Java114

ptg16518469

Figure 3.14 shows the result. If you actually want to copy all values of one array
into a new array, you use the copyOf method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, luckyNumbers.length);

Figure 3.14 Copying an array variable

The second parameter is the length of the new array. A common use of this method
is to increase the size of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 * luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false if
the array contains boolean values. Conversely, if the length is less than the length
of the original array, only the initial values are copied.

C++ NOTE: A Java array is quite different from a C++ array on the stack. It is,
however, essentially the same as a pointer to an array allocated on the heap.
That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking. Furthermore,
there is no pointer arithmetic—you can’t increment a to point to the next element
in the array.

1153.10 Arrays

ptg16518469

3.10.4 Command-Line Parameters
You have already seen one example of a Java array repeated quite a few times.
Every Java program has a main method with a String[] args parameter. This param-
eter indicates that the main method receives an array of strings—namely, the
arguments specified on the command line.

For example, consider this program:

public class Message
{
 public static void main(String[] args)
 {
 if (args.length == 0 || args[0].equals("-h"))

System.out.print("Hello,");
 else if (args[0].equals("-g"))

System.out.print("Goodbye,");
 // print the other command-line arguments
 for (int i = 1; i < args.length; i++)

System.out.print(" " + args[i]);
 System.out.println("!");
 }
}

If the program is called as

java Message -g cruel world

then the args array has the following contents:

args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message

Goodbye, cruel world!

C++ NOTE: In the main method of a Java program, the name of the program is
not stored in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message" or "java".

Chapter 3 Fundamental Programming Structures in Java116

ptg16518469

3.10.5 Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays class:

int[] a = new int[10000];
 . . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to
be very efficient on most data sets. The Arrays class provides several other conve-
nience methods for arrays that are included in the API notes at the end of this
section.

The program in Listing 3.7 puts arrays to work. This program draws a random
combination of numbers for a lottery game. For example, if you play a “choose
6 numbers from 49” lottery, the program might print this:

Bet the following combination. It'll make you rich!
 4
 7
 8
 19
 30
 44

To select such a random set of numbers, we first fill an array numbers with the values
1, 2, . . ., n:

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
 numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now we draw k numbers. The Math.random method returns a random floating-point
number that is between 0 (inclusive) and 1 (exclusive). By multiplying the result
with n, we obtain a random number between 0 and n – 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r + 1, but
as you’ll see presently, the contents of the numbers array are changed after each
draw.

result[i] = numbers[r];

Now we must be sure never to draw that number again—all lottery numbers
must be distinct. Therefore, we overwrite numbers[r] with the last number in the
array and reduce n by 1.

1173.10 Arrays

ptg16518469

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index
points into an array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing
output:

Arrays.sort(result);
for (int r : result)
 System.out.println(r);

Listing 3.7 LotteryDrawing/LotteryDrawing.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates array manipulation.
5 * @version 1.20 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class LotteryDrawing
9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13

14 System.out.print("How many numbers do you need to draw? ");
15 int k = in.nextInt();
16

17 System.out.print("What is the highest number you can draw? ");
18 int n = in.nextInt();
19

20 // fill an array with numbers 1 2 3 . . . n
21 int[] numbers = new int[n];
22 for (int i = 0; i < numbers.length; i++)
23 numbers[i] = i + 1;
24

25 // draw k numbers and put them into a second array
26 int[] result = new int[k];
27 for (int i = 0; i < result.length; i++)
28 {
29 // make a random index between 0 and n - 1
30 int r = (int) (Math.random() * n);
31

Chapter 3 Fundamental Programming Structures in Java118

ptg16518469

32 // pick the element at the random location
33 result[i] = numbers[r];
34

35 // move the last element into the random location
36 numbers[r] = numbers[n - 1];
37 n--;
38 }
39

40 // print the sorted array
41 Arrays.sort(result);
42 System.out.println("Bet the following combination. It'll make you rich!");
43 for (int r : result)
44 System.out.println(r);
45 }
46 }

java.util.Arrays 1.2

• static String toString(type[] a) 5.0

returns a string with the elements of a, enclosed in brackets and delimited by
commas.

An array of type int, long, short, char, byte, boolean, float,
or double.

aParameters:

• static type[] copyOf(type[] a, int length) 6
• static type[] copyOfRange(type[] a, int start, int end) 6

returns an array of the same type as a, of length either length or end - start, filled
with the values of a.

aParameters: An array of type int, long, short, char, byte, boolean, float,
or double.
The starting index (inclusive).start

The ending index (exclusive). May be larger than
a.length, in which case the result is padded with 0 or
false values.

end

The length of the copy. If length is larger than a.length,
the result is padded with 0 or false values. Otherwise,
only the initial length values are copied.

length

• static void sort(type[] a)

sorts the array, using a tuned QuickSort algorithm.

An array of type int, long, short, char, byte, float, or
double.

aParameters:

(Continues)

1193.10 Arrays

ptg16518469

java.util.Arrays 1.2 (Continued)

• static int binarySearch(type[] a, type v)
• static int binarySearch(type[] a, int start, int end, type v) 6

Uses the binary search algorithm to search for the value v. If it is found, its index is
returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

a sorted array of type int, long, short, char, byte, float, or
double.

aParameters:

The starting index (inclusive).start

The ending index (exclusive).end

A value of the same type as the elements of a.v

• static void fill(type[] a, type v)

Sets all elements of the array to v.

An array of type int, long, short, char, byte, boolean, float,
or double.

aParameters:

A value of the same type as the elements of a.v

• static boolean equals(type[] a, type[] b)

Returns true if the arrays have the same length and if the elements in corresponding
indexes match.

Arrays of type int, long, short, char, byte, boolean, float,
or double.

a, bParameters:

3.10.6 Multidimensional Arrays
Multidimensional arrays use more than one index to access array elements. They
are used for tables and other more complex arrangements. You can safely skip
this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an invest-
ment of $10,000 will grow under different interest rate scenarios in which interest
is paid annually and reinvested (Table 3.8).

You can store this information in a two-dimensional array (matrix), which we
call balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

Chapter 3 Fundamental Programming Structures in Java120

ptg16518469

Table 3.8 Growth of an Investment at Different Interest Rates

15%14%13%12%11%10%

10,000.0010,000.0010,000.0010,000.0010,000.0010,000.00

11,500.0011,400.0011,300.0011,200.0011,100.0011,000.00

13,225.0012,996.0012,769.0012,544.0012,321.0012,100.00

15,208.7514,815.4414,428.9714,049.2813,676.3113,310.00

17,490.0616,889.6016,304.7415,735.1915,180.7014,641.00

20,113.5719,254.1518,424.3517,623.4216,850.5816,105.10

23,130.6121,949.7320,819.5219,738.2318,704.1517,715.61

26,600.2025,022.6923,526.0522,106.8120,761.6019,487.17

30,590.2328,525.8626,584.4424,759.6323,045.3821,435.89

35,178.7632,519.4930,040.4227,730.7925,580.3723,579.48

You cannot use the array until you initialize it. In this case, you can do the
initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notation
for initializing a multidimensional array without a call to new. For example:

int[][] magicSquare =
 {
 {16, 3, 2, 13},
 {5, 10, 11, 8},
 {9, 6, 7, 12},
 {4, 15, 14, 1}
 };

Once the array is initialized, you can access individual elements by supplying
two pairs of brackets—for example, balances[i][j].

The example program stores a one-dimensional array interest of interest rates and
a two-dimensional array balances of account balances, one for each year and interest
rate. We initialize the first row of the array with the initial balance:

for (int j = 0; j < balances[0].length; j++)
 balances[0][j] = 10000;

Then we compute the other rows, as follows:

1213.10 Arrays

ptg16518469

for (int i = 1; i < balances.length; i++)
{
 for (int j = 0; j < balances[i].length; j++)
 {
 double oldBalance = balances[i - 1][j];
 double interest = . . .;
 balances[i][j] = oldBalance + interest;
 }
}

Listing 3.8 shows the full program.

NOTE: A “for each” loop does not automatically loop through all elements in a
two-dimensional array. Instead, it loops through the rows, which are themselves
one-dimensional arrays. To visit all elements of a two-dimensional array a, nest
two loops, like this:

for (double[] row : a)
 for (double value : row)

do something with value

TIP: To print out a quick-and-dirty list of the elements of a two-dimensional
array, call

System.out.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Listing 3.8 CompoundInterest/CompoundInterest.java

1 /**
2 * This program shows how to store tabular data in a 2D array.
3 * @version 1.40 2004-02-10
4 * @author Cay Horstmann
5 */
6 public class CompoundInterest
7 {
8 public static void main(String[] args)
9 {
10 final double STARTRATE = 10;
11 final int NRATES = 6;

Chapter 3 Fundamental Programming Structures in Java122

ptg16518469

12 final int NYEARS = 10;
13

14 // set interest rates to 10 . . . 15%
15 double[] interestRate = new double[NRATES];
16 for (int j = 0; j < interestRate.length; j++)
17 interestRate[j] = (STARTRATE + j) / 100.0;
18

19 double[][] balances = new double[NYEARS][NRATES];
20

21 // set initial balances to 10000
22 for (int j = 0; j < balances[0].length; j++)
23 balances[0][j] = 10000;
24

25 // compute interest for future years
26 for (int i = 1; i < balances.length; i++)
27 {
28 for (int j = 0; j < balances[i].length; j++)
29 {
30 // get last year's balances from previous row
31 double oldBalance = balances[i - 1][j];
32

33 // compute interest
34 double interest = oldBalance * interestRate[j];
35

36 // compute this year's balances
37 balances[i][j] = oldBalance + interest;
38 }
39 }
40

41 // print one row of interest rates
42 for (int j = 0; j < interestRate.length; j++)
43 System.out.printf("%9.0f%%", 100 * interestRate[j]);
44

45 System.out.println();
46

47 // print balance table
48 for (double[] row : balances)
49 {
50 // print table row
51 for (double b : row)
52 System.out.printf("%10.2f", b);
53

54 System.out.println();
55 }
56 }
57 }

1233.10 Arrays

ptg16518469

3.10.7 Ragged Arrays
So far, what you have seen is not too different from other programming languages.
But there is actually something subtle going on behind the scenes that you can
sometimes turn to your advantage: Java has no multidimensional arrays at all,
only one-dimensional arrays. Multidimensional arrays are faked as “arrays of
arrays.”

For example, the balances array in the preceding example is actually an array that
contains ten elements, each of which is an array of six floating-point numbers
(Figure 3.15).

Figure 3.15 A two-dimensional array

Chapter 3 Fundamental Programming Structures in Java124

ptg16518469

The expression balances[i] refers to the ith subarray—that is, the ith row of the
table. It is itself an array, and balances[i][j] refers to the jth element of that array.

Since rows of arrays are individually accessible, you can actually swap them!

double[] temp = balances[i];
balances[i] = balances[i + 1];
balances[i + 1] = temp;

It is also easy to make “ragged” arrays—that is, arrays in which different rows
have different lengths. Here is the standard example. Let us make an array in
which the element at row i and column j equals the number of possible outcomes
of a “choose j numbers from i numbers” lottery.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

As j can never be larger than i, the matrix is triangular. The ith row has i + 1 el-
ements. (We allow choosing 0 elements; there is one way to make such a choice.)
To build this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows.

for (int n = 0; n <= NMAX; n++)
 odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way,
provided we do not overstep the bounds.

for (int n = 0; n < odds.length; n++)
 for (int k = 0; k < odds[n].length; k++)
 {
 // compute lotteryOdds
 . . .
 odds[n][k] = lotteryOdds;
 }

Listing 3.9 gives the complete program.

1253.10 Arrays

ptg16518469

C++ NOTE: In C++, the Java declaration

double[][] balances = new double[10][6]; // Java

is not the same as

double balances[10][6]; // C++

or even

double (*balances)[6] = new double[10][6]; // C++

Instead, an array of ten pointers is allocated:

double** balances = new double*[10]; // C++

Then, each element in the pointer array is filled with an array of six numbers:

for (i = 0; i < 10; i++)
 balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10][6]. When you
want ragged arrays, you allocate the row arrays separately.

Listing 3.9 LotteryArray/LotteryArray.java

1 /**
2 * This program demonstrates a triangular array.
3 * @version 1.20 2004-02-10
4 * @author Cay Horstmann
5 */
6 public class LotteryArray
7 {
8 public static void main(String[] args)
9 {
10 final int NMAX = 10;
11

12 // allocate triangular array
13 int[][] odds = new int[NMAX + 1][];
14 for (int n = 0; n <= NMAX; n++)
15 odds[n] = new int[n + 1];
16

17 // fill triangular array
18 for (int n = 0; n < odds.length; n++)
19 for (int k = 0; k < odds[n].length; k++)
20 {
21 /*
22 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
23 */

Chapter 3 Fundamental Programming Structures in Java126

ptg16518469

24 int lotteryOdds = 1;
25 for (int i = 1; i <= k; i++)
26 lotteryOdds = lotteryOdds * (n - i + 1) / i;
27

28 odds[n][k] = lotteryOdds;
29 }
30

31 // print triangular array
32 for (int[] row : odds)
33 {
34 for (int odd : row)
35 System.out.printf("%4d", odd);
36 System.out.println();
37 }
38 }
39 }

You have now seen the fundamental programming structures of the Java language.
The next chapter covers object-oriented programming in Java.

1273.10 Arrays

