
In this chapter we take our first proper look at the source code of a class. We will discuss
the basic elements of class definitions: fields, constructors, and methods. Methods
contain statements, and initially we look at methods containing only simple arithmetic
and printing statements. Later we introduce conditional statements that allow choices
between different actions to be made within methods.

We shall start by examining a new project in a fair amount of detail. This project repre-
sents a naïve implementation of an automated ticket machine. As we start by introducing
the most basic features of classes, we shall quickly find that this implementation is defi-
cient in a number of ways. So we shall then proceed to describe a more sophisticated
version of the ticket machine that represents a significant improvement. Finally, in order
to reinforce the concepts introduced in this chapter, we take a look at the internals of the
lab-classes example encountered in Chapter 1.

Ticket machines
Train stations often provide ticket machines that print a ticket when a customer inserts the
correct money for their fare. In this chapter we shall define a class that models something
like these ticket machines. As we shall be looking inside our first Java example classes,
we shall keep our simulation fairly simple to start with. That will give us the opportunity
to ask some questions about how these models differ from the real-world versions, and
how we might change our classes to make the objects they create more like the real thing.

CHAPTER

Understanding class definitions2
Main concepts discussed in this chapter:

■ fields ■ methods (accessor, mutator)

■ constructors ■ assignment and conditional statement

■ parameters

Java constructs discussed in this chapter:
field, constructor, comment, parameter, assignment (=), block, return statement,
void, compound assignment operators (+=, –=), if statement

2.1

OFWJ_C02.QXD 2/3/06 2:28 pm Page 17

khalils
Highlight

khalils
Highlight

khalils
Highlight

Our ticket machines work by customers ‘inserting’ money into them, and then requesting
a ticket to be printed. A machine keeps a running total of the amount of money it has col-
lected throughout its operation. In real life, it is often the case that a ticket machine offers
a selection of different types of ticket from which customers choose the one they want.
Our simplified machines only print tickets of a single price. It turns out to be signifi-
cantly more complicated to program a class to be able to issue tickets of different values
than it does to have a single price. On the other hand, with object-oriented programming
it is very easy to create multiple instances of the class, each with its own price setting, to
fulfill a need for different types of ticket.

2.1.1 Exploring the behavior of a naïve ticket machine
Open the naive-ticket-machine project in BlueJ. This project contains only one class –
TicketMachine – which you will be able to explore in a similar way to the examples we
discussed in Chapter 1. When you create a TicketMachine instance, you will be asked
to supply a number that corresponds to the price of tickets that will be issued by that par-
ticular machine. The price is taken to be a number of cents, so a positive whole number
such as 500 would be appropriate as a value to work with.

18 Chapter 2 ■ Understanding class definitions

Exercise 2.1 Create a TicketMachine object on the object bench and take a look
at its methods. You should see the following: getBalance, getPrice, insertMoney,
and printTicket. Try out the getPrice method. You should see a return value con-
taining the price of the tickets that was set when this object was created. Use the
insertMoney method to simulate inserting an amount of money into the machine and
then use getBalance to check that the machine has a record of the amount inserted.
You can insert several separate amounts of money into the machine, just like you might
insert multiple coins or notes into a real machine. Try inserting the exact amount
required for a ticket. As this is a simple machine, a ticket will not be issued automati-
cally, so once you have inserted enough money, call the printTicket method. A
facsimile ticket should be printed in the BlueJ terminal window.

Exercise 2.2 What value is returned if you check the machine’s balance after it
has printed a ticket?

Exercise 2.3 Experiment with inserting different amounts of money before printing
tickets. Do you notice anything strange about the machine’s behavior? What happens
if you insert too much money into the machine – do you receive any refund? What
happens if you do not insert enough and then try to print a ticket?

Exercise 2.4 Try to obtain a good understanding of a ticket machine’s behavior by
interacting with it on the object bench before we start looking at how the
TicketMachine class is implemented in the next section.

Exercise 2.5 Create another ticket machine for tickets of a different price. Buy a
ticket from that machine. Does the printed ticket look different?

OFWJ_C02.QXD 2/3/06 2:28 pm Page 18

Examining a class definition
Examination of the behavior of TicketMachine objects within BlueJ reveals that they
only really behave in the way we might expect them to if we insert exactly the correct
amount of money to match the price of a ticket. As we explore the internal details of the
class in this section, we shall begin to see why this is so.

Take a look at the source code of the TicketMachine class by double-clicking its icon
in the class diagram. It should look something like Figure 2.1.

The complete text of the class is shown in Code 2.1. By looking at the text of the class
definition piece by piece we can flesh out some of the object-oriented concepts that we
talked about in Chapter 1.

2.2 Examining a class definition 19

2.2

Figure 2.1
The BlueJ editor
window

OFWJ_C02.QXD 2/3/06 2:28 pm Page 19

20 Chapter 2 ■ Understanding class definitions

/**
* TicketMachine models a naive ticket machine that issues
* flat-fare tickets.
* The price of a ticket is specified via the constructor.
* It is a naive machine in the sense that it trusts its users
* to insert enough money before trying to print a ticket.
* It also assumes that users enter sensible amounts.
*
* @author David J. Barnes and Michael Kölling
* @version 2006.03.30
*/
public class TicketMachine
{

// The price of a ticket from this machine.
private int price;
// The amount of money entered by a customer so far.
private int balance;
// The total amount of money collected by this machine.
private int total;

/**
* Create a machine that issues tickets of the given price.
* Note that the price must be greater than zero, and there
* are no checks to ensure this.
*/
public TicketMachine(int ticketCost)
{

price = ticketCost;
balance = 0;
total = 0;

}

/**
* Return the price of a ticket.
*/
public int getPrice()
{

return price;
}

/**
* Return the amount of money already inserted for the
* next ticket.
*/
public int getBalance()
{

return balance;
}

Code 2.1
The
TicketMachine
class

OFWJ_C02.QXD 2/3/06 2:28 pm Page 20

Fields, constructors, and methods
The source of most classes can be broken down into two main parts: a small outer wrap-
ping that simply names the class, and a much larger inner part that does all the work. In
this case, the outer wrapping appears as follows:

public class TicketMachine
{

Inner part of the class omitted.
}

The outer wrappings of different classes all look pretty much the same; their main pur-
pose is to provide a name for the class.

2.3 Fields, constructors, and methods 21

/**
* Receive an amount of money in cents from a customer.
*/
public void insertMoney(int amount)
{

balance = balance + amount;
}

/**
* Print a ticket.
* Update the total collected and
* reduce the balance to zero.
*/
public void printTicket()
{

// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

// Update the total collected with the balance.
total = total + balance;
// Clear the balance.
balance = 0;

}
}

Code 2.1
continued
The
TicketMachine
class

2.3

Exercise 2.6 Write out what you think the outer wrappers of the Student and
LabClass classes might look like – do not worry about the inner part.

OFWJ_C02.QXD 2/3/06 2:28 pm Page 21

The inner part of the class is where we define the fields, constructors, and methods that
give the objects of that class their own particular characteristics and behavior. We can
summarize the essential features of those three components of a class as follows:

■ The fields store data for each object to use.
■ The constructors allow each object to be set up properly when it is first created.
■ The methods implement the behavior of the objects.

In Java there are very few rules about the order in which you choose to define the fields,
constructors, and methods within a class. In the TicketMachine class we have chosen to
list the fields first, the constructors second, and finally the methods (Code 2.2). This is
the order that we shall follow in all of our examples. Other authors choose to adopt differ-
ent styles, and this is mostly a question of preference. Our style is not necessarily better
than all others. However, it is important to choose one style and then to use it consistently,
because then your classes will be easier to read and understand.

22 Chapter 2 ■ Understanding class definitions

Exercise 2.9 From your earlier experimentation with the ticket machine objects
within BlueJ you can probably remember the names of some of the methods –
printTicket, for instance. Look at the class definition in Code 2.1 and use this
knowledge, along with the additional information about ordering we have given you,
to try to make a list of the names of the fields, constructors, and methods in the
TicketMachine class. Hint: There is only one constructor in the class.

Exercise 2.10 Do you notice any features of the constructor that make it signifi-
cantly different from the other methods of the class?

public class ClassName
{

Fields
Constructors
Methods

}

Code 2.2
Our ordering of
fields, constructors,
and methods

Exercise 2.7 Does it matter whether we write

public class TicketMachine

or
class public TicketMachine

in the outer wrapper of a class? Edit the source of the TicketMachine class to
make the change and then close the editor window. Do you notice a change in the
class diagram?

What error message do you get when you now press the Compile button? Do you think
this message clearly explains what is wrong?

Exercise 2.8 Check whether or not it is possible to leave out the word public
from the outer wrapper of the TicketMachine class.

OFWJ_C02.QXD 2/3/06 2:28 pm Page 22

2.3.1 Fields
The TicketMachine class has three fields: price, balance, and total. Fields are also
known as instance variables. We have defined these right at the start of the class definition
(Code 2.3). All of the fields are associated with monetary items that a ticket machine
object has to deal with:

■ The price field stores the fixed price of a ticket.

■ The balance field stores the amount of money inserted into the machine by a user
prior to asking for a ticket to be printed.

■ The total field stores a record of the total amount of money inserted into the
machine by all users since the machine object was constructed.

Fields are small amounts of space inside an object that can be used to store values. Every
object, once created, will have some space for every field declared in its class. Figure 2.2
shows a diagrammatic representation of a ticket machine object with its three fields. The
fields have not yet been assigned any values; once they have, we can write each value into
the box representing the field. The notation is similar to that used in BlueJ to show
objects on the object bench, except that we show a bit more detail here. In BlueJ, for
space reasons, the fields are not displayed on the object icon. We can, however, see them
by opening an inspector window.

Each field has its own declaration in the source code. On the line above each, in the full
class definition, we have added a single line of text – a comment – for the benefit of
human readers of the class definition:

// The price of a ticket from this machine.
private int price;

2.3 Fields, constructors, and methods 23

public class TicketMachine
{

private int price;
private int balance;
private int total;

Constructor and methods omitted.
}

Code 2.3
The fields of the
TicketMachine
class

Concept:

Fields store data
for an object to
use. Fields are
also known as
instance variables.

total

balance

price

ticketMachine 1:
TicketMachine

Figure 2.2
An object of class
TicketMachine

OFWJ_C02.QXD 2/3/06 2:28 pm Page 23

A single-line comment is introduced by the two characters ‘//’, which are written with no
spaces between them. More detailed comments, often spanning several lines, are usually
written in the form of multi-line comments. These start with the character pair ‘/*’ and end
with the pair ‘*/’. There is a good example preceding the header of the class in Code 2.1.

The definitions of the three fields are quite similar:

■ All definitions indicate that they are private fields of the object; we shall have more to
say about what this means in Chapter 5, but for the time being we will simply say that
we always define fields to be private.

■ All three fields are of type int. This indicates that each can store a single whole-
number value, which is reasonable given that we wish them to store numbers that rep-
resent amounts of money in cents.

Because fields can store values that can vary over time, they are also known as variables.
The value stored in a field can be changed if we wish to. For instance, as more money is
inserted into a ticket machine we shall want to change the value stored in the balance field.
In the following sections we shall also meet other kinds of variables in addition to fields.

The price, balance, and total fields are all the data items that a ticket machine object
needs to fulfill its role of receiving money from a customer, printing tickets, and keeping
a running total of all the money that has been put into it. In the following sections we
shall see how the constructor and methods use those fields to implement the behavior of
naïve ticket machines.

24 Chapter 2 ■ Understanding class definitions

Concept:

Comments are
inserted into the
source code of a
class to provide
explanations to
human readers.
They have no effect
on the functionality
of the class.

Exercise 2.11 What do you think is the type of each of the following fields?

private int count;
private Student representative;
private Server host;

Exercise 2.12 What are the names of the following fields?

private boolean alive;
private Person tutor;
private Game game;

Exercise 2.13 In the following field declaration from the TicketMachine class

private int price;

does it matter which order the three words appear in? Edit the TicketMachine class to
try different orderings. After each change, close the editor. Does the appearance of the
class diagram after each change give you a clue as to whether or not other orderings are
possible? Check by pressing the Compile button to see if there is an error message.

Make sure that you reinstate the original version after your experiments!

Exercise 2.14 Is it always necessary to have a semicolon at the end of a field dec-
laration? Once again, experiment via the editor. The rule you will learn here is an
important one, so be sure to remember it.

Exercise 2.15 Write in full the declaration for a field of type int whose name is
status.

OFWJ_C02.QXD 2/3/06 2:28 pm Page 24

2.3.2 Constructors
The constructors of a class have a special role to fulfill. It is their responsibility to put
each object of that class into a fit state to be used once it has been created. This is also
called initialization. The constructor initializes the object to a reasonable state. Code 2.4
shows the constructor of the TicketMachine class.

One of the distinguishing features of constructors is that they have the same name as the
class in which they are defined – TicketMachine in this case.

The fields of the object are initialized in the constructor. Some fields, such as balance
and total, can be set to sensible initial values by assigning a constant number, zero in
this case. With others, such as the ticket price, it is not that simple, as we do not know the
price that tickets from a particular machine will have until that machine is constructed:
recall that we might wish to create multiple machine objects to sell tickets with different
prices, so no one initial price will always be right. You will recall from experimenting
with creating TicketMachine objects within BlueJ that you had to supply the cost of the
tickets whenever you created a new ticket machine. An important point to note here is that
the price of a ticket is initially determined outside the ticket machine, and then has to be
passed into a ticket machine object. Within BlueJ you decide the value and enter it into a
dialog box. One task of the constructor is to receive that value and store it in the price
field of the newly created ticket machine so that the machine can remember what that
value was without you having to keep reminding it. We can see from this that one of the
most important roles of a field is to remember information, so that it is available to an
object throughout that object’s lifetime.

Figure 2.3 shows a ticket machine object after the constructor has executed. Values have
now been assigned to the fields. From this diagram we can tell that the ticket machine
was created by passing in 500 as the value for the ticket price.

In the next section we discuss how values are received by an object from outside.

2.3 Fields, constructors, and methods 25

public class TicketMachine
{

Fields omitted.

/**
* Create a machine that issues tickets of the given price.
* Note that the price must be greater than zero, and there
* are no checks to ensure this.
*/
public TicketMachine(int ticketCost)
{

price = ticketCost;
balance = 0;
total = 0;

}

Methods omitted.
}

Code 2.4
The constructor
of the
TicketMachine
class

Concept:

Constructors
allow each object
to be set up
properly when it is
first created.

OFWJ_C02.QXD 2/3/06 2:28 pm Page 25

26 Chapter 2 ■ Understanding class definitions

Passing data via parameters
The way in which both constructors and methods receive values is via their parameters.
You may recall that we briefly encountered parameters in Chapter 1. Parameters are
defined in the header of the constructor or method:

public TicketMachine(int ticketCost)

This constructor has a single parameter, ticketCost, which is of type int – the same
type as the price field it will be used to set. Figure 2.4 illustrates how values are passed
via parameters. In this case, a BlueJ user enters a value into the dialog box when creating
a new ticket machine (shown on the left), and that value is then copied into the ticket-
Cost parameter of the new machine’s constructor. This is illustrated with the arrow
labeled (A). The box in the ticket machine object in Figure 2.4, labeled ‘TicketMachine
(constructor),’ is additional space for the object that is created only when the constructor
executes. We shall call it the constructor space of the object (or method space when we
talk about methods instead of constructors, as the situation there is the same). The con-
structor space is used to provide space to store the values for the constructor’s parameters
(and other variables that we will come across later).

We distinguish between parameter names inside a constructor or method, and parameter
values outside, by referring to the names as formal parameters and the values as actual
parameters. So ticketCost is a formal parameter, and a user-supplied value, such as
500, is an actual parameter. Because they are able to store values, formal parameters are
another sort of variable. In our diagrams, all variables are represented by white boxes.

A formal parameter is available to an object only within the body of a constructor or
method that declares it. We say that the scope of a parameter is restricted to the body of
the constructor or method in which it is declared. In contrast, the scope of a field is the
whole of the class definition – it can be accessed from anywhere in the same class.

Concept:

The scope of a
variable defines
the section of
source code from
where the variable
can be accessed.

total

balance

price

ticketMachine 1:
TicketMachine

0

0

500

Figure 2.3
A TicketMachine
object after
initialization
(created for 500
cent tickets)

Note In Java, all fields are automatically initialized to a default value if they are not
explicitly initialized. For integer fields this default value is 0. So, strictly speaking, we could
have done without setting balance and total to 0, relying on the default value to give
us the same result. However, we prefer to write the explicit assignments anyway. There is
no disadvantage to it, and it serves well to document what is actually happening. We do
not rely on a reader of the class knowing what the default value is, and we document that
we really want this value to be zero, and have not just forgotten to initialize it.

2.4

OFWJ_C02.QXD 2/3/06 2:28 pm Page 26

A concept related to variable scope is variable lifetime. The lifetime of a parameter is lim-
ited to a single call of a constructor or method. Once that call has completed its task, the
formal parameters disappear and the values they held are lost. In other words, when the
constructor has finished executing, the whole constructor space (see Figure 2.4) is
removed, along with the parameter variables held within it.

In contrast, the lifetime of a field is the same as the lifetime of the object to which
it belongs. It follows that if we want to remember the cost of tickets held in the
ticketCost parameter, we must store the value somewhere more persistent – that is, in
the price field.

Assignment
In the previous section, we noted the need to store the short-lived value of a parameter
into somewhere more permanent – a field. In order to do this, the body of the constructor
contains the following assignment statement:

price = ticketCost;

2.5 Assignment 27

total

balance

price

ticketMachine 1:
TicketMachine

0

0

500

500ticketCost

TicketMachine
(constructor)

(B)

(A)

Figure 2.4
Parameter passing
(A) and assignment
(B)

Concept:

The lifetime of a
variable describes
how long the
variable continues
to exist before it is
destroyed.

2.5

Exercise 2.16 To what class does the following constructor belong?

public Student(String name)

Exercise 2.17 How many parameters does the following constructor have and
what are their types?

public Book(String title, double price)

Exercise 2.18 Can you guess what types some of the Book class’s fields might
be? Can you assume anything about the names of its fields?

OFWJ_C02.QXD 2/3/06 2:28 pm Page 27

Assignment statements are recognized by the presence of an assignment operator, such
as ‘=’ in the example above. Assignment statements work by taking the value of what
appears on the right-hand side of the operator and copying that value into a variable on
the left-hand side. This is illustrated in Figure 2.4 by the arrow labeled (B). The right-
hand side is called an expression: expressions are things that compute values. In this
case, the expression consists of just a single variable but we shall see some examples of
more complicated expressions containing arithmetic operations later in this chapter. One
rule about assignment statements is that the type of the expression must match the type
of the variable to which it is assigned. So far we have met three different types: int,
String, and (very briefly) boolean. This rule means that we are not allowed to store an
integer-type expression in a string-type variable, for instance. This same rule also applies
between formal parameters and actual parameters: the type of an actual-parameter
expression must match the type of the formal-parameter variable. For now, we can say
that the types of both must be the same, although we shall see in later chapters that this
is not the whole truth.

Accessor methods
The TicketMachine class has four methods: getPrice, getBalance, insertMoney,
and printTicket. We shall start our look at the source code of methods by considering
getPrice (Code 2.5).

28 Chapter 2 ■ Understanding class definitions

Concept:

Assignment
statements store
the value
represented by the
right-hand side of
the statement in
the variable
named on the left.

2.6

Exercise 2.19 Suppose that the class Pet has a field called name that is of type
String. Write an assignment statement in the body of the following constructor so
that the name field will be initialized with the value of the constructor’s parameter.

public Pet(String petsName)
{

...
}

Exercise 2.20 Challenge exercise What is wrong with the following version of the
constructor of TicketMachine?

public TicketMachine(int ticketCost)
{

int price = ticketCost;
balance = 0;
total = 0;

}

Once you have spotted the problem, try out this version in the naive-ticket-machine
project. Does this version compile? Create an object and then inspect its fields. Do
you notice something wrong about the value of the price field in the inspector with
this version? Can you explain why this is?

OFWJ_C02.QXD 2/3/06 2:28 pm Page 28

Methods have two parts: a header and a body. Here is the method header for getPrice:

/**
* Return the price of a ticket.
*/
public int getPrice()

The first three lines are a comment describing what the method does. The fourth line is
also known as the method signature.1 It is important to distinguish between method
signatures and field declarations, because they can look quite similar. We can tell that
getPrice is a method and not a field because it is followed by a pair of parentheses: ‘(’
and ‘)’. Note, too, that there is no semicolon at the end of the signature.

The method body is the remainder of the method after the header. It is always enclosed
by a matching pair of curly brackets: ‘{’ and ‘}’. Method bodies contain the declarations
and statements that define what happens inside an object when that method is called. In
our example above, the method body contains a single statement, but we shall see
examples very soon where the method body consists of many lines of both declarations
and statements.

Any set of declarations and statements between a pair of matching curly brackets is
known as a block. So the body of the TicketMachine class and the bodies of all the
methods within the class are blocks.

There are at least two significant differences between the signatures of the
TicketMachine constructor and the getPrice method:

public TicketMachine(int ticketCost)

public int getPrice()

2.6 Accessor methods 29

Concept:

Methods consist of
two parts: a header
and a body.

1 This definition differs slightly from the more formal definition in the Java language specification
where the signature does not include the access modifier and return type.

public class TicketMachine
{

Fields omitted.

Constructor omitted.

/**
* Return the price of a ticket.
*/
public int getPrice()
{

return price;
}

Remaining methods omitted.
}

Code 2.5
The getPrice
method

OFWJ_C02.QXD 2/3/06 2:28 pm Page 29

■ The method has a return type of int, but the constructor has no return type. A return
type is written just before the method name.

■ The constructor has a single formal parameter, ticketCost, but the method has none
– just a pair of empty parentheses.

It is an absolute rule in Java that a constructor may not have a return type. On the other hand,
both constructors and methods may have any number of formal parameters, including none.

Within the body of getPrice there is a single statement:

return price;

This is a return statement. It is responsible for returning an integer value to match the
int return type in the method’s signature. Where a method contains a return statement, it
is always the final statement of that method, because no further statements in the method
will be executed once the return statement is executed.

The int return type of getPrice is a form of promise that the body of the method will do
something that ultimately results in an integer value being calculated and returned as the
method’s result. You might like to think of a method call as being a form of question to an
object, and the return value from the method being the object’s answer to that question. In
this case, when the getPrice method is called on a ticket machine, the question is, ‘What
do tickets cost?’ A ticket machine does not need to perform any calculations to be able to
answer that, because it keeps the answer in its price field. So the method answers by just
returning the value of that variable. As we gradually develop more complex classes, we shall
inevitably encounter more complex questions that require more work to supply their answers.

We often describe methods such as the two get methods of TicketMachine (getPrice
and getBalance) as accessor methods (or just accessors). This is because they return
information to the caller about the state of an object – they provide access to that state.
An accessor usually contains a return statement in order to pass back that information as
a particular value.

30 Chapter 2 ■ Understanding class definitions

Exercise 2.21 Compare the getBalance method with the getPrice method.
What are the differences between them?

Exercise 2.22 If a call to getPrice can be characterized as ‘What do tickets
cost?’, how would you characterize a call to getBalance?

Exercise 2.23 If the name of getBalance is changed to getAmount, does the
return statement in the body of the method need to be changed, too? Try it out within
BlueJ.

Exercise 2.24 Define an accessor method, getTotal, that returns the value of
the total field.

Exercise 2.25 Try removing the return statement from the body of getPrice.
What error message do you see now when you try compiling the class?

Exercise 2.26 Compare the method signatures of getPrice and printTicket
in Code 2.1. Apart from their names, what is the main difference between them?

Concept:

Accessor
methods return
information about
the state of an
object.

OFWJ_C02.QXD 2/3/06 2:28 pm Page 30

Mutator methods
The get methods of a ticket machine perform similar tasks – returning the value of one
of their object’s fields. The remaining methods – insertMoney and printTicket –
have a much more significant role, primarily because they change the value of one or
more fields of a ticket machine object each time they are called. We call methods that
change the state of their object mutator methods (or just mutators).

In the same way as we think of accessors as requests for information (questions), we can
think of mutators as requests for an object to change its state.

One distinguishing effect of a mutator is that an object will often exhibit slightly different
behavior before and after it is called. We can illustrate this with the following exercise.

The signature of insertMoney has a void return type and a single formal parameter,
amount, of type int. A void return type means that the method does not return any
value to its caller. This is significantly different from all other return types. Within BlueJ
the difference is most noticeable in that no return-value dialog is shown following a call
to a void method. Within the body of a void method, this difference is reflected in the
fact that there is no return statement.2

2.7 Mutator methods 31

Exercise 2.27 Do the insertMoney and printTicket methods have return
statements? Why do you think this might be? Do you notice anything about their
headers that might suggest why they do not require return statements?

2.7

Concept:

Mutator methods
change the state
of an object.

Exercise 2.28 Create a ticket machine with a ticket price of your choosing. Before
doing anything else, call the getBalance method on it. Now call the insertMoney
method (Code 2.6) and give a non-zero positive amount of money as the actual
parameter. Now call getBalance again. The two calls to getBalance should show
different output because the call to insertMoney had the effect of changing the
machine’s state via its balance field.

/**
* Receive an amount of money in cents from a customer.
*/
public void insertMoney(int amount)
{

balance = balance + amount;
}

Code 2.6
The insertMoney
method

2 In fact, Java does allow void methods to contain a special form of return statement in which
there is no return value. This takes the form

return;

and simply causes the method to exit without executing any further code.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 31

In the body of insertMoney there is a single statement that is another form of assign-
ment statement. We always consider assignment statements by first examining the
calculation on the right-hand side of the assignment symbol. Here, its effect is to calcu-
late a value that is the sum of the number in the amount parameter and the number in the
balance field. This combined value is then assigned to the balance field. So the effect
is to increase the value in balance by the value in amount.3

Printing from methods
Code 2.7 shows the most complex method of the class: printTicket. To help your
understanding of the following discussion, make sure that you have called this method on

32 Chapter 2 ■ Understanding class definitions

2.8

Exercise 2.29 How can we tell from just its header that setPrice is a method
and not a constructor?

public void setPrice(int ticketCost)

Exercise 2.30 Complete the body of the setPrice method so that it assigns the
value of its parameter to the price field.

Exercise 2.31 Complete the body of the following method, whose purpose is to
add the value of its parameter to a field named score.

/**
* Increase score by the given number of points.
*/
public void increase(int points)
{

...
}

Exercise 2.32 Can you complete the following method, whose purpose is to sub-
tract the value of its parameter from a field named price?

/**
* Reduce price by the given amount.
*/
public void discount(int amount)
{

...
}

3 Adding an amount to the value in a variable is so common that there is a special compound
assignment operator to do this: +=. For instance:

balance += amount;

OFWJ_C02.QXD 2/3/06 2:29 pm Page 32

2.8 Printing from methods 33

a ticket machine. You should have seen something like the following printed in the BlueJ
terminal window:

##################
The BlueJ Line
Ticket
500 cents.
##################

This is the longest method we have seen so far, so we shall break it down into more man-
ageable pieces:

■ The signature indicates that the method has a void return type and that it takes no
parameters.

■ The body comprises eight statements plus associated comments.

■ The first six statements are responsible for printing what you see in the BlueJ terminal
window.

■ The seventh statement adds the balance inserted by the customer (through previous calls
to insertMoney) to the running total of all money collected so far by the machine.

■ The eighth statement resets the balance to zero with a basic assignment statement,
ready for the next customer to insert some money.

By comparing the output that appears with the statements that produced it, it is easy to
see that a statement such as

System.out.println("# The BlueJ Line");

literally prints the string that appears between the matching pair of double quote charac-
ters. All of these printing statements are calls to the println method of the
System.out object that is built into the Java language. In the fourth statement the actual
parameter to println is a little more complicated:

Concept:

The method
System.out.
println prints
its parameter to
the text terminal.

/**
* Print a ticket and reduce the
* current balance to zero.
*/
public void printTicket()
{

// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

// Update the total collected with the balance.
total = total + balance;
// Clear the balance.
balance = 0;

}

Code 2.7
The printTicket
method

OFWJ_C02.QXD 2/3/06 2:29 pm Page 33

34 Chapter 2 ■ Understanding class definitions

System.out.println("# " + price + " cents.");

The two ‘+’ operators are being used to construct a single string parameter from three
components:

■ the string literal: "# " (note the space character after the hash);
■ the value of the price field (note there are no quotes around the field name);
■ the string literal: " cents." (note the space character before the word cents).

When used between a string and anything else, ‘+’ is a string-concatenation operator (i.e.
it concatenates or joins strings together to create a new string) rather than an arithmetic-
addition operator.

Note that the final call to println contains no string parameter. This is allowed, and the
result of calling it will be to leave a blank line between this output and any that follows
after. You will easily see the blank line if you print a second ticket.

Summary of the naïve ticket machine
We have now examined the internal structure of the naïve ticket machine class in some
detail. We have seen that the class has a small outer layer that gives a name to the class,
and a more substantial inner body containing fields, a constructor, and several methods.
Fields are used to store data that enable objects to maintain a state. Constructors are used

Exercise 2.33 Add a method called prompt to the TicketMachine class. This
should have a void return type and take no parameters. The body of the method
should print something like:

Please insert the correct amount of money.

Exercise 2.34 Add a showPrice method to the TicketMachine class. This
should have a void return type and take no parameters. The body of the method
should print something like:

The price of a ticket is xyz cents.

where xyz should be replaced by the value held in the price field when the method
is called.

Exercise 2.35 Create two ticket machines with differently priced tickets. Do calls
to their showPrice methods show the same output, or different? How do you explain
this effect?

Exercise 2.36 What do you think would be printed if you altered the fourth state-
ment of printTicket so that price also has quotes around it, as follows?

System.out.println("# " + "price" + " cents.");

Exercise 2.37 What about the following version?

System.out.println("# price cents.");

Exercise 2.38 Could either of the previous two versions be used to show the
price of tickets in different ticket machines? Explain your answer.

2.9

OFWJ_C02.QXD 2/3/06 2:29 pm Page 34

to set up an initial state when an object is created. Having a proper initial state will enable
an object to respond appropriately to method calls immediately following its creation.
Methods implement the defined behavior of the class’s objects. Accessors provide infor-
mation about an object’s state, and mutators change an object’s state.

We have seen that constructors are distinguished from methods by having the same name
as the class in which they are defined. Both constructors and methods may take parame-
ters, but only methods may have a return type. Non-void return types allow us to pass a
result out of a method. A method with a non-void return type will have a return statement
as the final statement of its body. Return statements are only applicable to methods,
because constructors never have a return type of any sort – not even void.

Reflecting on the design of the ticket
machine
In the next few sections we shall examine the implementation of an improved ticket machine
class that attempts to deal with some of the inadequacies of the naïve implementation.

From our study of the internals of the TicketMachine class you should have come to
appreciate how inadequate it would be in the real world. It is deficient in several ways:

2.10 Reflecting on the design of the ticket machine 35

Before attempting these exercises, be sure that you have a good understanding of
how ticket machines behave, and how that behavior is implemented through the
fields, constructor, and methods of the class.

Exercise 2.39 Modify the constructor of TicketMachine so that it no longer has
a parameter. Instead, the price of tickets should be fixed at 1000 cents. What effect
does this have when you construct ticket machine objects within BlueJ?

Exercise 2.40 Implement a method, empty, that simulates the effect of removing
all money from the machine. This method should have a void return type, and its
body should simply set the total field to zero. Does this method need to take any
parameters? Test your method by creating a machine, inserting some money, printing
some tickets, checking the total, and then emptying the machine. Is this method a
mutator or an accessor?

Exercise 2.41 Implement a method, setPrice, that is able to set the price of
tickets to a new value. The new price is passed in as a parameter value to the
method. Test your method by creating a machine, showing the price of tickets,
changing the price, and then showing the new price. Is this method a mutator?

Exercise 2.42 Give the class two constructors. One should take a single parame-
ter that specifies the price, and the other should take no parameter and set the price
to be a default value of your choosing. Test your implementation by creating machines
via the two different constructors.

2.10

OFWJ_C02.QXD 2/3/06 2:29 pm Page 35

36 Chapter 2 ■ Understanding class definitions

■ It contains no check that the customer has entered enough money to pay for a ticket.

■ It does not refund any money if the customer pays too much for a ticket.

■ It does not check to ensure that the customer inserts sensible amounts of money:
experiment with what happens if a negative amount is entered, for instance.

■ It does not check that the ticket price passed to its constructor is sensible.

If we could remedy these problems, then we would have a much more functional piece of
software that might serve as the basis for operating a real-world ticket machine. In order to
see that we can improve the existing version, open the better-ticket-machine project. As
before, this project contains a single class – TicketMachine. Before looking at the inter-
nal details of the class, experiment with it by creating some instances and see whether you
notice any differences in behavior between this version and the previous naïve version. One
specific difference is that the new version has one additional method, refundBalance.
Later in this chapter we shall use this method to introduce an additional feature of Java, so
take a look at what happens when you call it.

Making choices: the conditional statement
Code 2.8 shows the internal details of the better ticket machine’s class definition. Much
of this definition will already be familiar to you from our discussion of the naïve ticket
machine. For instance, the outer wrapping that names the class is the same because we
have chosen to give this class the same name. In addition, it contains the same three fields
to maintain object state, and these have been declared in the same way. The constructor
and the two get methods are also the same as before.

2.11

/**
* TicketMachine models a ticket machine that issues
* flat-fare tickets.
* The price of a ticket is specified via the constructor.
* Instances will check to ensure that a user only enters
* sensible amounts of money, and will only print a ticket
* if enough money has been input.
* @author David J. Barnes and Michael Kölling
* @version 2006.03.30
*/
public class TicketMachine
{

// The price of a ticket from this machine.
private int price;
// The amount of money entered by a customer so far.
private int balance;
// The total amount of money collected by this machine.
private int total;

Code 2.8
A more
sophisticated ticket
machine

OFWJ_C02.QXD 2/3/06 2:29 pm Page 36

2.11 Making choices: the conditional statement 37

/**
* Create a machine that issues tickets of the given price.
*/
public TicketMachine(int ticketCost)
{

price = ticketCost;
balance = 0;
total = 0;

}

/**
* Return the price of a ticket.
*/
public int getPrice()
{

return price;
}

/**
* Return the amount of money already inserted for the
* next ticket.
*/
public int getBalance()
{

return balance;
}

/**
* Receive an amount of money in cents from a customer.
* Check that the amount is sensible.
*/
public void insertMoney(int amount)
{

if(amount > 0) {
balance = balance + amount;

}
else {

System.out.println("Use a positive amount: " +
amount);

}
}

/**
* Print a ticket if enough money has been inserted, and
* reduce the current balance by the ticket price. Print
* an error message if more money is required.
*/
public void printTicket()
{

Code 2.8
continued
A more
sophisticated ticket
machine

OFWJ_C02.QXD 2/3/06 2:29 pm Page 37

38 Chapter 2 ■ Understanding class definitions

The first significant change can be seen in the insertMoney method. We recognized
that the main problem with the naïve ticket machine was its failure to check certain con-
ditions. One of those missing checks was on the amount of money inserted by a
customer, as it was possible for a negative amount of money to be inserted. We have
remedied that failing by making use of a conditional statement to check that the amount
inserted has a value greater than zero:

if(amount > 0) {
balance = balance + amount;

}
else {

System.out.println("Use a positive amount: " + amount);
}

Conditional statements are also known as if statements, from the word used in most pro-
gramming languages to introduce them. A conditional statement allows us to take one of
two possible actions based upon the result of a check or test. If the test is true, then we do

if(balance >= price) {
// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

// Update the total collected with the price.
total = total + price;
// Reduce the balance by the price.
balance = balance – price;

}
else {

System.out.println("You must insert at least: " +
(price – balance) + " cents.");

}
}

/**
* Return the money in the balance.
* The balance is cleared.
*/
public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}
}

Code 2.8
continued
A more
sophisticated ticket
machine

Concept:

A conditional
statement takes
one of two
possible actions
based upon the
result of a test.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 38

one thing, otherwise we do something different. A conditional statement has the general
form described in the following pseudo-code:

if(perform some test that gives a true or false result) {
Do the statements here if the test gave a true result

}
else {

Do the statements here if the test gave a false result
}

It is important to appreciate that only one of the sets of statements following the test will
ever be performed following the evaluation of the test. So, in the example from the
insertMoney method, following the test of an inserted amount we shall only either add
the amount to the balance, or print the error message. The test uses the greater-than oper-
ator, ‘>’, to compare the value in amount against zero. If the value is greater than zero
then it is added to the balance. If it is not greater than zero, then an error message
is printed. By using a conditional statement we have, in effect, protected the change to
balance in the case where the parameter does not represent a valid amount.

The test used in a conditional statement is an example of a boolean expression. Earlier in
this chapter we introduced arithmetic expressions that produced numerical results. A
boolean expression has only two possible values, true or false: either the value of
amount is greater than zero (true) or it is not greater (false). A conditional statement
makes use of those two possible values to choose between two different actions.

A further conditional-statement example
The printTicket method contains a further example of a conditional statement. Here it
is in outline:

2.12 A further conditional-statement example 39

Exercise 2.43 Check that the behavior we have discussed here is accurate by
creating a TicketMachine instance and calling insertMoney with various actual
parameter values. Check the balance both before and after calling insertMoney.
Does the balance ever change in the cases when an error message is printed? Try to
predict what will happen if you enter the value zero as the parameter, and then see if
you are right.

Exercise 2.44 Predict what you think will happen if you change the test in
insertMoney to use the greater-than or equal-to operator:

if(amount >= 0)

Check your predictions by running some tests. What difference does it make to the
behavior of the method?

Exercise 2.45 In the shapes project we looked at in Chapter 1 we used a
boolean field to control a feature of the circle objects. What was that feature? Was it
well suited to being controlled by a type with only two different values?

Concept:

Boolean
expressions have
only two possible
values: true and
false. They are
commonly found
controlling the
choice between the
two paths through
a conditional
statement.

2.12

OFWJ_C02.QXD 2/3/06 2:29 pm Page 39

if(balance >= price) {

Printing details omitted.

// Update the total collected with the price.
total = total + price;
// Reduce the balance by the price.
balance = balance – price;

}
else {

System.out.println("You must insert at least: " +
(price – balance) + " more cents.");

}

We wish to remedy the fact that the naïve version makes no check that a customer has
inserted enough money to be issued with a ticket. This version checks that the value in the
balance field is at least as large as the value in the price field. If it is, then it is okay to
print a ticket. If it is not, then we print an error message instead.

The printTicket method reduces the value of balance by the value of price. As a
consequence, if a customer inserts more money than the price of the ticket, then some
money will be left in the balance that could be used towards the price of a second ticket.
Alternatively, the customer could ask to be refunded the remaining balance, and that is
what the refundBalance method does, as we shall see in the next section.

40 Chapter 2 ■ Understanding class definitions

Exercise 2.46 In this version of printTicket we also do something slightly
different with the total and balance fields. Compare the implementation of the
method in Code 2.1 with that in Code 2.8 to see whether you can tell what those
differences are. Then check your understanding by experimenting within BlueJ.

Exercise 2.47 After a ticket has been printed, could the value in the balance
field ever be set to a negative value by subtracting price from it? Justify your answer.

Exercise 2.48 So far we have introduced you to two arithmetic operators, + and –,
that can be used in arithmetic expressions in Java. Take a look at Appendix D to find
out what other operators are available.

Exercise 2.49 Write an assignment statement that will store the result of multiply-
ing two variables, price and discount, into a third variable, saving.

Exercise 2.50 Write an assignment statement that will divide the value in total
by the value in count and store the result in mean.

Exercise 2.51 Write an if statement that will compare the value in price against
the value in budget. If price is greater than budget then print the message ‘Too
expensive’, otherwise print the message ‘Just right’.

Exercise 2.52 Modify your answer to the previous exercise so that the message if
the price is too high includes the value of your budget.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 40

Local variables
The refundBalance method contains three statements and a declaration. The declar-
ation illustrates a new sort of variable:

public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}

What sort of variable is amountToRefund? We know that it is not a field, because fields
are defined outside methods. It is also not a parameter, as those are always defined in the
method header. The amountToRefund variable is what is known as a local variable
because it is defined inside a method. It is quite common to initialize local variables within
their declaration. So we could abbreviate the first two statements of refundBalance as

int amountToRefund = balance;

Local variable declarations look similar to field declarations, but they never have private
or public as part of them. Like formal parameters, local variables have a scope that is
limited to the statements of the method to which they belong. Their lifetime is the time of
the method execution: they are created when a method is called and destroyed when a
method finishes. Constructors can also have local variables.

Local variables are often used as temporary storage locations to help a method complete its
task. In this method amountToRefund is used to hold the value of the balance immediately
prior to the latter being set to zero. The method then returns the old value of the balance.
The following exercises will help to illustrate why a local variable is needed here, as we try
to write the refundBalance method without one.

2.13 Local variables 41

Exercise 2.53 Why does the following version of refundBalance not give the
same results as the original?

public int refundBalance()
{

balance = 0;
return balance;

}

What tests can you run to demonstrate that it does not?

Exercise 2.54 What happens if you try to compile the TicketMachine class with
the following version of refundBalance?

public int refundBalance()
{

return balance;
balance = 0;

}

What do you know about return statements that helps to explain why this version
does not compile?

2.13

Concept:

A local variable
is a variable
declared and used
within a single
method. Its scope
and lifetime are
limited to that of
the method.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 41

Now that you have seen how local variables are used, look back at Exercise 2.20 and check
that you understand how, there, a local variable is preventing a field of the same name from
being accessed.

Fields, parameters, and local variables
With the introduction of amountToRefund in the refundBalance method we have now
seen three different kinds of variable: fields, formal parameters, and local variables. It is
important to understand the similarities and differences between these three kinds. Here is
a summary of their features:

■ All three kinds of variable are able to store a value that is appropriate to their defined
type. For instance, a defined type of int allows a variable to store an integer value.

■ Fields are defined outside constructors and methods.

■ Fields are used to store data that persists throughout the life of an object. As such, they
maintain the current state of an object. They have a lifetime that lasts as long as their
object lasts.

■ Fields have class scope: their accessibility extends throughout the whole class, and so
they can be used within any of the constructors or methods of the class in which they
are defined.

■ As long as they are defined as private, fields cannot be accessed from anywhere out-
side their defining class.

■ Formal parameters and local variables persist only for the period that a constructor or
method executes. Their lifetime is only as long as a single call, so their values are lost
between calls. As such, they act as temporary rather than permanent storage locations.

■ Formal parameters are defined in the header of a constructor or method. They receive
their values from outside, being initialized by the actual parameter values that form
part of the constructor or method call.

■ Formal parameters have a scope that is limited to their defining constructor or method.

■ Local variables are defined inside the body of a constructor or method. They can be
initialized and used only within the body of their defining constructor or method.
Local variables must be initialized before they are used in an expression – they are not
given a default value.

■ Local variables have a scope that is limited to the block in which they are defined.
They are not accessible from anywhere outside that block.

42 Chapter 2 ■ Understanding class definitions

Exercise 2.55 Add a new method, emptyMachine, that is designed to simulate
emptying the machine of money. It should both return the value in total and reset
total to be zero.

Exercise 2.56 Is emptyMachine an accessor, a mutator, or both?

Pitfall A local variable of the same name as a field will prevent the field being accessed
from within a method. See Section 3.12.2 for a way around this when necessary.

2.14

OFWJ_C02.QXD 2/3/06 2:29 pm Page 42

2.16 Self-review exercises 43

Summary of the better ticket machine
In developing a more sophisticated version of the TicketMachine class, we have been
able to address the major inadequacies of the naïve version. In doing so, we have intro-
duced two new language constructs: the conditional statement, and local variables.

■ A conditional statement gives us a means to perform a test and then, on the basis of the
result of that test, perform one or other of two distinct actions.

■ Local variables allow us to calculate and store temporary values within a constructor
or method. They contribute to the behavior that their defining method implements, but
their values are lost once that constructor or method finishes its execution.

You can find more details of conditional statements and the form that their tests can take
in Appendix C.

Self-review exercises
This chapter has covered a lot of new ground and we have introduced a lot of new con-
cepts. We will be building on these in future chapters so it is important that you are
comfortable with them. Try the following pencil-and-paper exercises as a way of check-
ing that you are becoming used to the terminology that we have introduced in this chapter.
Don’t be put off by the fact that we suggest you do these on paper rather than within
BlueJ. It will be good practice to try things out without a compiler.

2.15

2.16

Exercise 2.57 Rewrite the printTicket method so that it declares a local
variable, amountLeftToPay. This should then be initialized to contain the difference
between price and balance. Rewrite the test in the conditional statement to check
the value of amountLeftToPay. If its value is less than or equal to zero, a ticket
should be printed, otherwise an error message should be printed stating the amount
still required. Test your version to ensure that it behaves in exactly the same way as
the original version.

Exercise 2.58 Challenge exercise Suppose we wished a single TicketMachine
object to be able to issue tickets with different prices. For instance, users might press
a button on the physical machine to select a particular ticket price. What further
methods and/or fields would need to be added to TicketMachine to allow this kind
of functionality? Do you think that many of the existing methods would need to be
changed as well?

Save the better-ticket-machine project under a new name and implement your
changes to the new project.

Exercise 2.59 List the name and return type of this method:

public String getCode()
{

return code;
}

OFWJ_C02.QXD 2/3/06 2:29 pm Page 43

44 Chapter 2 ■ Understanding class definitions

Exercise 2.60 List the name of this method and the name and type of its parameter:

public void setCredits(int creditValue)
{

credits = creditValue;
}

Exercise 2.61 Write out the outer wrapping of a class called Person. Remember
to include the curly brackets that mark the start and end of the class body, but other-
wise leave the body empty.

Exercise 2.62 Write out definitions for the following fields:

■ A field called name of type String.
■ A field of type int called age.
■ A field of type String called code.
■ A field called credits of type int.

Exercise 2.63 Write out a constructor for a class called Module. The constructor
should take a single parameter of type String called moduleCode. The body of
the constructor should assign the value of its parameter to a field called code. You
don’t have to include the definition for code, just the text of the constructor.

Exercise 2.64 Write out a constructor for a class called Person. The constructor
should take two parameters. The first is of type String and is called myName. The
second is of type int and is called myAge. The first parameter should be used to
set the value of a field called name, and the second should set a field called age.
You don’t have to include the definitions for fields, just the text of the constructor.

Exercise 2.65 Correct the error in this method:

public void getAge()
{

return age;
}

Exercise 2.66 Write an accessor method called getName that returns the value
of a field called name, whose type is String.

Exercise 2.67 Write a mutator method called setAge that takes a single parame-
ter of type int and sets the value of a field called age.

Exercise 2.68 Write a method called printDetails for a class that has a field
of type String called name. The printDetails method should print out a
String of the form “The name of this person is” followed by the value of
the name field. For instance, if the value of the name field is “Helen” then
printDetails would print:

The name of this person is Helen

OFWJ_C02.QXD 2/3/06 2:29 pm Page 44

If you have managed to complete most or all of these exercises, then you might like to try
creating a new project in BlueJ and making up your own class definition for a Person.
The class could have fields to record the name and age of a person, for instance. If you
were unsure how to complete any of the exercises, look back over earlier sections in this
chapter and the source code of TicketMachine to revise what you were unclear about.
In the next section we provide some further review material.

Reviewing a familiar example
By this point in the chapter you have met a lot of new concepts. To help reinforce those
concepts, we shall now revisit them in a different but familiar context. Open the lab-
classes project that we introduced in Chapter 1 and then examine the Student class in
the editor (Code 2.9).

2.17 Reviewing a familiar example 45

/**
* The Student class represents a student in a
* student administration system.
* It holds the student details relevant in our context.
*
* @author Michael Kölling and David Barnes
* @version 2006.03.30
*/
public class Student
{

// the student’s full name
private String name;
// the student ID
private String id;
// the amount of credits for study taken so far
private int credits;

/**
* Create a new student with a given name and ID number.
*/
public Student(String fullName, String studentID)
{

name = fullName;
id = studentID;
credits = 0;

}

/**
* Return the full name of this student.
*/
public String getName()
{

return name;
}

Code 2.9
The Student class

2.17

OFWJ_C02.QXD 2/3/06 2:29 pm Page 45

46 Chapter 2 ■ Understanding class definitions

/**
* Set a new name for this student.
*/
public void changeName(String newName)
{

name = newName;
}

/**
* Return the student ID of this student.
*/
public String getStudentID()
{

return id;
}

/**
* Add some credit points to the student’s
* accumulated credits.
*/
public void addCredits(int newCreditPoints)
{

credits += newCreditPoints;
}

/**
* Return the number of credit points this student
* has accumulated.
*/
public int getCredits()
{

return credits;
}

/**
* Return the login name of this student.
* The login name is a combination
* of the first four characters of the
* student’s name and the first three
* characters of the student’s ID number.
*/
public String getLoginName()
{

return name.substring(0,4) +
id.substring(0,3);

}

/**
* Print the student’s name and ID number
* to the output terminal.
*/

Code 2.9
continued
The Student class

OFWJ_C02.QXD 2/3/06 2:29 pm Page 46

The class contains three fields: name, id, and credits. Each of these is initialized in the
single constructor. The initial values of the first two are set from parameter values passed
into the constructor. Each of the fields has an associated get- accessor method, but only
name and credits have associated mutator methods. This means that the value of an id
field remains fixed once the object has been constructed.

The getLoginName method illustrates a new feature that is worth exploring:

public String getLoginName()
{

return name.substring(0,4) +
id.substring(0,3);

}

Both name and id are strings, and the String class has an accessor method,
substring, with the following signature:

/**
* Return a new string containing the characters from
* beginIndex to (endIndex-1) from this string.
*/
public String substring(int beginIndex, int endIndex)

An index value of zero represents the first character of a string, so getLoginName takes
the first four characters of the name string, the first three characters of the id string, and
concatenates them to form a new string. This new string is returned as the method’s result.
For instance, if name is the string "Leonardo da Vinci" and id is the string
"468366", then the string "Leon468" would be returned by this method.

2.17 Reviewing a familiar example 47

public void print()
{

System.out.println(name + " (" + id + ")");
}

}

Code 2.9
continued
The Student class

Exercise 2.69 Draw a picture of the form shown in Figure 2.3 representing the
initial state of a Student object following its construction with the following actual
parameter values:

new Student("Benjamin Jonson", "738321")

Exercise 2.70 What would be returned by getLoginName for a student with the
name "Henry Moore" and the id "557214"?

Exercise 2.71 Create a Student with name "djb" and id "859012". What
happens when getLoginName is called on this student? Why do you think this is?

OFWJ_C02.QXD 2/3/06 2:29 pm Page 47

Summary
In this chapter we have covered the basics of how to create a class definition. Classes con-
tain fields, constructors, and methods that define the state and behavior of objects. Within
constructors and methods a sequence of statements defines how an object accomplishes
its designated tasks. We have covered assignment statements and conditional statements,
and will be adding further types of statement in later chapters.

Terms introduced in this chapter
field, instance variable, constructor, method, method signature, method
body, parameter, accessor, mutator, declaration, initialization, block, state-
ment, assignment statement, conditional statement, return statement, return
type, comment, expression, operator, variable, local variable, scope, lifetime

48 Chapter 2 ■ Understanding class definitions

Concept summary

■ field Fields store data for an object to use. Fields are also known as instance variables.

■ comment Comments are inserted into the source code of a class to provide
explanations to human readers. They have no effect on the functionality of the class.

■ constructor Constructors allow each object to be set up properly when it is first created.

■ scope The scope of a variable defines the section of source code from where the
variable can be accessed.

Exercise 2.72 The String class defines a length accessor method with the fol-
lowing signature:

/**
* Return the number of characters in this string.
*/
public int length()

Add conditional statements to the constructor of Student to print an error message
if either the length of the fullName parameter is less than four characters or the
length of the studentId parameter is less than three characters. However, the con-
structor should still use those parameters to set the name and id fields, even if the
error message is printed. Hint: Use if statements of the following form (that is, having
no else part) to print the error messages.

if(perform a test on one of the parameters) {
Print an error message if the test gave a true result

}

See Appendix C for further details of the different types of if statement, if necessary.

Exercise 2.73 Challenge exercise Modify the getLoginName method of Student
so that it always generates a login name, even if either of the name and id fields is not
strictly long enough. For strings shorter than the required length, use the whole string.

2.18

OFWJ_C02.QXD 2/3/06 2:29 pm Page 48

2.18 Summary 49

The following exercises are designed to help you experiment with the concepts of Java that
we have discussed in this chapter. You will create your own classes that contain elements
such as fields, constructors, methods, assignment statements, and conditional statements.

■ lifetime The lifetime of a variable describes how long the variable continues to exist
before it is destroyed.

■ assignment Assignment statements store the value represented by the right-hand side
of the statement in the variable named on the left.

■ method Methods consist of two parts: a header and a body.

■ accessor method Accessor methods return information about the state of an object.

■ mutator method Mutator methods change the state of an object.

■ println The method System.out.println prints its parameter to the text terminal.

■ conditional A conditional statement takes one of two possible actions based upon the
result of a test.

■ boolean expression Boolean expressions have only two possible values: true and false.
They are commonly found controlling the choice between the two paths through a
conditional statement.

■ local variable A local variable is a variable declared and used within a single method. Its
scope and lifetime are limited to that of the method.

Exercise 2.74 Below is the outline for a Book class, which can be found in the book-
exercise project. The outline already defines two fields and a constructor to initialize the
fields. In this exercise and the next few, you will add further features to the class outline.

Add two accessor methods to the class – getAuthor and getTitle – that return
the author and title fields as their respective results. Test your class by creating
some instances and calling the methods.

/**
* A class that maintains information on a book.
* This might form part of a larger application such
* as a library system, for instance.
*
* @author (Insert your name here.)
* @version (Insert today’s date here.)
*/
public class Book
{

// The fields.
private String author;
private String title;

/**
* Set the author and title fields when this object
* is constructed.
*/

OFWJ_C02.QXD 2/3/06 2:29 pm Page 49

50 Chapter 2 ■ Understanding class definitions

public Book(String bookAuthor, String bookTitle)
{

author = bookAuthor;
title = bookTitle;

}

// Add the methods here ...
}

Exercise 2.75 Add two methods, printAuthor and printTitle, to the outline
Book class. These should print the author and title fields, respectively, to the terminal
window.

Exercise 2.76 Add a further field, pages, to the Book class to store the number of
pages. This should be of type int, and its initial value should be passed to the
single constructor, along with the author and title strings. Include an appropriate
getPages accessor method for this field.

Exercise 2.77 Add a method, printDetails, to the Book class. This should
print details of the author, title, and pages to the terminal window. It is your choice
how the details are formatted. For instance, all three items could be printed on a
single line, or each could be printed on a separate line. You might also choose to
include some explanatory text to help a user work out which is the author and
which is the title, for example

Title: Robinson Crusoe, Author: Daniel Defoe, Pages: 232

Exercise 2.78 Add a further field, refNumber, to the Book class. This field can store
a reference number for a library, for example. It should be of type String and initialized
to the zero length string ("") in the constructor as its initial value is not passed in a
parameter to the constructor. Instead, define a mutator for it with the following signature:

public void setRefNumber(String ref)

The body of this method should assign the value of the parameter to the refNumber
field. Add a corresponding getRefNumber accessor to help you check that the
mutator works correctly.

Exercise 2.79 Modify your printDetails method to include printing the refer-
ence number. However, the method should print the reference number only if it has
been set – that is, the refNumber string has a non-zero length. If it has not been set,
then print the string "ZZZ" instead. Hint: Use a conditional statement whose test
calls the length method on the refNumber string.

Exercise 2.80 Modify your setRefNumber mutator so that it sets the refNumber
field only if the parameter is a string of at least three characters. If it is less than
three, then print an error message and leave the field unchanged.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 50

2.18 Summary 51

Exercise 2.81 Add a further integer field, borrowed, to the Book class. This
keeps a count of the number of times a book has been borrowed. Add a mutator,
borrow, to the class. This should update the field by 1 each time it is called. Include
an accessor, getBorrowed, that returns the value of this new field as its result.
Modify printDetails so that it includes the value of this field with an explanatory
piece of text.

Exercise 2.82 Challenge exercise Create a new project, heater-exercise, within
BlueJ. Edit the details in the project description – the text note you see in the dia-
gram. Create a class, Heater, that contains a single integer field, temperature.
Define a constructor that takes no parameters. The temperature field should be set
to the value 15 in the constructor. Define the mutators warmer and cooler, whose
effect is to increase or decrease the value of temperature by 5° respectively. Define
an accessor method to return the value of temperature.

Exercise 2.83 Challenge exercise Modify your Heater class to define three new
integer fields: min, max, and increment. The values of min and max should be set
by parameters passed to the constructor. The value of increment should be set to
5 in the constructor. Modify the definitions of warmer and cooler so that they use
the value of increment rather than an explicit value of 5. Before proceeding further
with this exercise, check that everything works as before. Now modify the warmer
method so that it will not allow the temperature to be set to a value greater than max.
Similarly modify cooler so that it will not allow temperature to be set to a value
less than min. Check that the class works properly. Now add a method, set-
Increment, that takes a single integer parameter and uses it to set the value of
increment. Once again, test that the class works as you would expect it to by creat-
ing some Heater objects within BlueJ. Do things still work as expected if a negative
value is passed to the setIncrement method? Add a check to this method to pre-
vent a negative value from being assigned to increment.

OFWJ_C02.QXD 2/3/06 2:29 pm Page 51

